Data File Handling

File. The information / data stored under a specific name on a storage device, is called a file.

Stream. It refers to a sequence of bytes.

Text file. It is a file that stores information in ASCII characters. In text files, each line of text is terminated with a special character known as EOL (End of Line) character or delimiter character. When this EOL character is read or written, certain internal translations take place.

Binary file. It is a file that contains information in the same format as it is held in memory. In binary files, no delimiters are used for a line and no translations occur here.    

Classes for file stream operation

ofstream: Stream class to write on files

ifstream: Stream class to read from files

fstream: Stream class to both read and write from/to files.

 

These classes are derived directly or indirectly from the classes istream and ostream. We have already used objects whose types were these classes: cin is an object of class istream and cout is an object of class ostream. Therefore, we have already been using classes that are related to our file streams. And in fact, we can use our file streams the same way we are already used to use cin and cout, with the only difference that we have to associate these streams with physical files. Let's see an example:

1

  
  
  2

  
  
  3

  
  
  4

  
  
  5

  
  
  6

  
  
  7

  
  
  8

  
  
  9

  
  
  10

  
  
  11

  
  
  12
// basic file operations
#include <iostream>
#include <fstream>
using namespace std;
 
int main () {
  ofstream myfile;
  myfile.open ("example.txt");
  myfile << "Writing this to a file.\n";
  myfile.close();
  return 0;
}
[file example.txt]
Writing this to a file.



This code creates a file called example.txt and inserts a sentence into it in the same way we are used to do with cout, but using the file stream myfile instead.

But let's go step by step:

 

Open a file

The first operation generally performed on an object of one of these classes is to associate it to a real file. This procedure is known as to open a file. An open file is represented within a program by a stream (i.e., an object of one of these classes; in the previous example, this was myfile) and any input or output operation performed on this stream object will be applied to the physical file associated to it.

Opening File using Constructor


ofstream outFile("sample.txt");    //output only

ifstream inFile(“sample.txt”);  //input only

OPENING FILE USING open()

Stream-object.open(filename”,mode)

ofstream outFile;

    outFile.open("sample.txt");

        ifstream inFile;

      inFile.open("sample.txt");



In order to open a file with a stream object we use its member function open:

open (filename, mode);

Where filename is a string representing the name of the file to be opened, and mode is an optional parameter with a combination of the following flags:

ios::in

Open for input operations.

ios::out

Open for output operations.

ios::binary

Open in binary mode.

ios::ate

Set the initial position at the end of the file.If this flag is not set, the initial position is the beginning of the file.

ios::app

All output operations are performed at the end of the file, appending the content to the current content of the file.

ios::trunc

If the file is opened for output operations and it already existed, its previous content is deleted and replaced by the new one.


All these flags can be combined using the bitwise operator OR (|). For example, if we want to open the file example.binin binary mode to add data we could do it by the following call to member function open:

1

  
  
  2
ofstream myfile;
myfile.open ("example.bin", ios::out | ios::app | ios::binary); 



Each of the open member functions of classes ofstreamifstream and fstream has a default mode that is used if the file is opened without a second argument:

class

default mode parameter

ofstream

ios::out

ifstream

ios::in

fstream

ios::in | ios::out


For ifstream and ofstream classes, ios::in and ios::out are automatically and respectively assumed, even if a mode that does not include them is passed as second argument to the open member function (the flags are combined).


For fstream, the default value is only applied if the function is called without specifying any value for the mode parameter. If the function is called with any value in that parameter the default mode is overridden, not combined.


File streams opened in binary mode perform input and output operations independently of any format considerations. Non-binary files are known as text files, and some translations may occur due to formatting of some special characters (like newline and carriage return characters).


Since the first task that is performed on a file stream is generally to open a file, these three classes include a constructor that automatically calls the open member function and has the exact same parameters as this member. Therefore, we could also have declared the previous myfile object and conduct the same opening operation in our previous example by writing:

 
ofstream myfile ("example.bin", ios::out | ios::app | ios::binary);



Combining object construction and stream opening in a single statement. Both forms to open a file are valid and equivalent.


To check if a file stream was successful opening a file, you can do it by calling to member is_open. This member function returns a bool value of true in the case that indeed the stream object is associated with an open file, or falseotherwise:

 
if (myfile.is_open()) { /* ok, proceed with output */ }




Closing a File

When we are finished with our input and output operations on a file we shall close it so that the operating system is notified and its resources become available again. For that, we call the stream's member function close. This member function takes flushes the associated buffers and closes the file:

 
myfile.close();



Once this member function is called, the stream object can be re-used to open another file, and the file is available again to be opened by other processes.


In case that an object is destroyed while still associated with an open file, the destructor automatically calls the member function close.

Input and Output Operation

put() and get() function

the function put() writes a single character to the associated stream. Similarly, the function get() reads a single character form the associated stream.
example :
file.get(ch);
file.put(ch);

write() and read() function

write() and read() functions write and read blocks of binary data.

example:
file.read((char *)&obj, sizeof(obj));

file.write((char *)&obj, sizeof(obj));

 

Error Handling Function

FUNCTION

RETURN VALUE AND MEANING

eof()

returns true (non zero) if end of file is encountered while reading; otherwise return false(zero)

fail()

return true when an input or output operation has failed

bad()

returns true if an invalid operation is attempted or any unrecoverable error has occurred.

good()

returns true if no error has occurred.

File Pointers And Their Manipulation

All i/o streams objects have, at least, one internal stream pointer: 

ifstream, like istream, has a pointer known as the get pointer that points to the element to be read in the next input operation.

ofstream, like ostream, has a pointer known as the put pointer that points to the location where the next element has to be written.

Finally, fstream, inherits both, the get and the put pointers, from iostream (which is itself derived from both istream and ostream). 
These internal stream pointers that point to the reading or writing locations within a stream can be manipulated using the following member functions:

seekg()

moves get pointer(input) to a specified location

seekp()

moves put pointer (output) to a specified location

tellg()

gives the current position of the get pointer

tellp()

gives the current position of the put pointer

 
The other prototype for these functions is:

seekg(offset, refposition ); 

seekp(offset, refposition );

The parameter offset represents the number of bytes the file pointer is to be moved from the location specified by the parameter refposition. The refposition takes one of the following three constants defined in the ios class.

ios::beg          start of the file

ios::cur          current position of the pointer

ios::end          end of the file

example:
file.seekg(-10, ios::cur);




Text files

Text file streams are those where the ios::binary flag is not included in their opening mode. These files are designed to store text and thus all values that are input or output from/to them can suffer some formatting transformations, which do not necessarily correspond to their literal binary value.

Writing operations on text files are performed in the same way we operated with cout:

1

  
  
  2

  
  
  3

  
  
  4

  
  
  5

  
  
  6

  
  
  7

  
  
  8

  
  
  9

  
  
  10

  
  
  11

  
  
  12

  
  
  13

  
  
  14

  
  
  15

  
  
  16
// writing on a text file
#include <iostream>
#include <fstream>
using namespace std;
 
int main () {
  ofstream myfile ("example.txt");
  if (myfile.is_open())
  {
    myfile << "This is a line.\n";
    myfile << "This is another line.\n";
    myfile.close();
  }
  else cout << "Unable to open file";
  return 0;
}
[file example.txt]
This is a line.
This is another line.



Reading from a file can also be performed in the same way that we did with cin:

1

  
  
  2

  
  
  3

  
  
  4

  
  
  5

  
  
  6

  
  
  7

  
  
  8

  
  
  9

  
  
  10

  
  
  11

  
  
  12

  
  
  13

  
  
  14

  
  
  15

  
  
  16

  
  
  17

  
  
  18

  
  
  19

  
  
  20

  
  
  21

  
  
  22
// reading a text file
#include <iostream>
#include <fstream>
#include <string>
using namespace std;
 
int main () {
  string line;
  ifstream myfile ("example.txt");
  if (myfile.is_open())
  {
    while ( getline (myfile,line) )
    {
      cout << line << '\n';
    }
    myfile.close();
  }
 
  else cout << "Unable to open file"; 
 
  return 0;
}
This is a line.
This is another line.  



This last example reads a text file and prints out its content on the screen. We have created a while loop that reads the file line by line, using getline. The value returned by getline is a reference to the stream object itself, which when evaluated as a boolean expression (as in this while-loop) is true if the stream is ready for more operations, and false if either the end of the file has been reached or if some other error occurred.


Checking state flags

The following member functions exist to check for specific states of a stream (all of them return a bool value): 

bad()

Returns true if a reading or writing operation fails. For example, in the case that we try to write to a file that is not open for writing or if the device where we try to write has no space left.

fail()

Returns true in the same cases as bad(), but also in the case that a format error happens, like when an alphabetical character is extracted when we are trying to read an integer number.

eof()

Returns true if a file open for reading has reached the end.

good()

It is the most generic state flag: it returns false in the same cases in which calling any of the previous functions would return true. Note that good and bad are not exact opposites (good checks more state flags at once).


The member function clear() can be used to reset the state flags.

 

get and put stream positioning

All i/o streams objects keep internally -at least- one internal position:

ifstream, like istream, keeps an internal get position with the location of the element to be read in the next input operation.


ofstream, like ostream, keeps an internal put position with the location where the next element has to be written.


Finally, fstream, keeps both, the get and the put position, like iostream.


These internal stream positions point to the locations within the stream where the next reading or writing operation is performed. These positions can be observed and modified using the following member functions: 

tellg() and tellp()

These two member functions with no parameters return a value of the member type streampos, which is a type representing the current get position (in the case of tellg) or the put position (in the case of tellp).

seekg() and seekp()

These functions allow to change the location of the get and put positions. Both functions are overloaded with two different prototypes. The first form is:

seekg ( position );

seekp ( position );


Using this prototype, the stream pointer is changed to the absolute position position (counting from the beginning of the file). The type for this parameter is streampos, which is the same type as returned by functions tellg and tellp.

The other form for these functions is:

seekg ( offset, direction );

seekp ( offset, direction );


Using this prototype, the get or put position is set to an offset value relative to some specific point determined by the parameter directionoffset is of type streamoff. And direction is of type seekdir, which is an enumerated type that determines the point from where offset is counted from, and that can take any of the following values:

ios::beg

offset counted from the beginning of the stream

ios::cur

offset counted from the current position

ios::end

offset counted from the end of the stream


The following example uses the member functions we have just seen to obtain the size of a file: 

1

  
  
  2

  
  
  3

  
  
  4

  
  
  5

  
  
  6

  
  
  7

  
  
  8

  
  
  9

  
  
  10

  
  
  11

  
  
  12

  
  
  13

  
  
  14

  
  
  15
// obtaining file size
#include <iostream>
#include <fstream>
using namespace std;
 
int main () {
  streampos begin,end;
  ifstream myfile ("example.bin", ios::binary);
  begin = myfile.tellg();
  myfile.seekg (0, ios::end);
  end = myfile.tellg();
  myfile.close();
  cout << "size is: " << (end-begin) << " bytes.\n";
  return 0;
}
size is: 40 bytes.



Notice the type we have used for variables begin and end:

 
streampos size;



streampos is a specific type used for buffer and file positioning and is the type returned by file.tellg(). Values of this type can safely be subtracted from other values of the same type, and can also be converted to an integer type large enough to contain the size of the file.

These stream positioning functions use two particular types: streampos and streamoff. These types are also defined as member types of the stream class:

Type

Member type

Description

streampos

ios::pos_type

Defined as fpos<mbstate_t>.

It can be converted to/from streamoff and can be added or subtracted values of these types.

streamoff

ios::off_type

It is an alias of one of the fundamental integral types (such as int or long long).


Each of the member types above is an alias of its non-member equivalent (they are the exact same type). It does not matter which one is used. The member types are more generic, because they are the same on all stream objects (even on streams using exotic types of characters), but the non-member types are widely used in existing code for historical reasons.

 

Binary files

For binary files, reading and writing data with the extraction and insertion operators (<< and >>) and functions like getline is not efficient, since we do not need to format any data and data is likely not formatted in lines.


File streams include two member functions specifically designed to read and write binary data sequentially: write and read. The first one (write) is a member function of ostream (inherited by ofstream). And read is a member function of istream (inherited by ifstream). Objects of class fstream have both. Their prototypes are:

write ( memory_block, size );

read ( memory_block, size );

Where memory_block is of type char* (pointer to char), and represents the address of an array of bytes where the read data elements are stored or from where the data elements to be written are taken. The size parameter is an integer value that specifies the number of characters to be read or written from/to the memory block.

1

  
  
  2

  
  
  3

  
  
  4

  
  
  5

  
  
  6

  
  
  7

  
  
  8

  
  
  9

  
  
  10

  
  
  11

  
  
  12

  
  
  13

  
  
  14

  
  
  15

  
  
  16

  
  
  17

  
  
  18

  
  
  19

  
  
  20

  
  
  21

  
  
  22

  
  
  23

  
  
  24

  
  
  25
// reading an entire binary file
#include <iostream>
#include <fstream>
using namespace std;
 
int main () {
  streampos size;
  char * memblock;
 
  ifstream file ("example.bin", ios::in|ios::binary|ios::ate);
  if (file.is_open())
  {
    size = file.tellg();
    memblock = new char [size];
    file.seekg (0, ios::beg);
    file.read (memblock, size);
    file.close();
 
    cout << "the entire file content is in memory";
 
    delete[] memblock;
  }
  else cout << "Unable to open file";
  return 0;
}
the entire file content is in memory



In this example, the entire file is read and stored in a memory block. Let's examine how this is done:


First, the file is open with the ios::ate flag, which means that the get pointer will be positioned at the end of the file. This way, when we call to member tellg(), we will directly obtain the size of the file

Once we have obtained the size of the file, we request the allocation of a memory block large enough to hold the entire file:

 
memblock = new char[size];



Right after that, we proceed to set the get position at the beginning of the file (remember that we opened the file with this pointer at the end), then we read the entire file, and finally close it:

1

  
  
  2

  
  
  3
file.seekg (0, ios::beg);
file.read (memblock, size);
file.close();


At this point we could operate with the data obtained from the file. But our program simply announces that the content of the file is in memory and then finishes.

Buffers and Synchronization

When we operate with file streams, these are associated to an internal buffer object of type streambuf. This buffer object may represent a memory block that acts as an intermediary between the stream and the physical file. For example, with an ofstream, each time the member function put (which writes a single character) is called, the character may be inserted in this intermediate buffer instead of being written directly to the physical file with which the stream is associated.

The operating system may also define other layers of buffering for reading and writing to files.

When the buffer is flushed, all the data contained in it is written to the physical medium (if it is an output stream). This process is called synchronization and takes place under any of the following circumstances: