Complex Number

Study Material:

Definition:

            A complex number is a number which can be expressed in the form  where  and  are real numbers and  is the solution of the equation  and .  is called imaginary number. In a complex number,  is called real part and  is called imaginary part. It is also written as . Here  and .

            Example:

                          etc.

         The set of complex numbers is denoted by. Since any real number  can be written as  so all real numbers are complex numbers. But all complex are may not be real numbers. As example  is not a real number.

Graphical representation:

             - Axis is called real axis and -axis is called imaginary axis. If  both are positive then the graphical representation of  is as the figure. So here we can see that  lies on real axis and    lies on imaginary axis.

 

 

 

 


Power of:

                  Since. So,

                  Continuing this process we will get, where an integer is.

 

Complex conjugate of complex number:

            Let   be a complex number then its complex conjugate is given by

 

 

 

 

 

 


Modulus of complex number:

                                                 Let  then the modulus of  is denoted by  and defined by a non-negative real number

 . .

 

Addition of two complex numbers:

             Two complex are added by separately adding their real and imaginary parts.

            Let       and . Then

                         

 

Geometric interpretation:

            The sum of two complex Numbers  and  interpreted as point obtain by Building a parallelogram whose two adjacent sides are  and.

            Addition of two complex number satisfies closer, associative, commutative, existence of identity and existence of inverse properties.

 


       In general if  then

                                     

 

Subtraction of two complex numbers:

             Two complex are subtracted by separately subtracting their real and imaginary parts.

                        Let   and. Then

                               

 

 

Geometric interpretation:

                          is the addition of   and , whose geometrical representation  is shown in the figure.

 

 

 

 

 

 


Multiplication of two complex numbers:

                         Let      and. Then their multiplication

                                     

 

Geometric interpretation:

                        The geometric interpretation of complex numbers  and is stretching and rotation of vectors in the plan, shown in the figure.

 

 

 

 

 


Division of two complex numbers:

                         Let   and  where. Then their division is given by

 


                         

 

                                                

 

Example 1: Express  in the form of.

    Solution:

                         

                                           

                                           .

 

Example 2: Express in the form of.

      Solution:

                       

                                                .

 

Some important result in complex number: If  and  be two complex numbers. Then

(i)                      

(ii)        provided

(iii)         

(iv)         

(v)             provided

 

Exercise of NCERT book

Express each of the complex number given in the exercise 1 to 10 in the form.

1.    

Solution:

                   

 

2.    

Solution:

                   

                                

3.       

Solution:

                   .

 

4.    

Solution:

                   

                                                            .

5.    

Solution:

                   

                                                      .

6.    

Solution:

                   

                                               

7.    

Solution:

                   

                                     

                             

8.    

Solution:

                

                              

                             

9.    

Solution:

                   

                                     

                                    

10. 

Solution:

                        

                                                     

                                                     

                                                  .

  

Find the multiplicative inverse of each of the complex numbers given in the exercise 11 to 13.

11.   

Solution:

       Let      

       Then  and

So the multiplicative inverse of  is given by,

                                       .

 

12. 

Solution:

       Let     . Then  and

                   

So the multiplicative inverse of  is given by,

                            .

 

13. 

Solution:

      Let      Then  and

                   

So the multiplicative inverse of  is given by,

                     .

 

14.  Express the following expression in the form.

               

Solution:

                  

                                                    

                                                     .

 

Polar representation of complex number:

Text Box: Y

            Let P represent a non-zero complex number 

            . Let  be the polar coordinate of the point P. where  is the distance OP and  

            be the angle which makes OP with the positive -axis.

            Then  and  i.e., .

Text Box: X            Then and .

              is called modulus of  and is denoted by  and  is called argument of  and is denoted by.

Now arg       , when  lies in 1st quadrant

                                  When  lies in 2nd quadrant

                              , when  lies in 3rd quadrant

                               When  lies in 4th quadrant.

 

Exercise of NCERT

Find the modulus and arguments of each of the complex numbers in exercise 1 to 2.

1.    

Solution:

       Here  and

      Then modulus      

And  lies in 3rd quadrant. So argument of  is

       .

 

2.    

Solution:

       Here  and

      So        

Since  lies in 2nd quadrant. So

                         .

 

Convert each of the complex numbers given in the expression 3 to 8 in polar form:

3.     .

Solution:

                   Let     . Then  and

                  So        

Since  lies in 4th quadrant so

                               

 Polar form of  is.

 

4.     .

Solution:

                  Let      . Then  and

                  So        

Since  lies in 2nd quadrant so

                               

 Polar form of  is .

 

5.     .

Solution:

                   Let     . Then  and

                  So        

Since  lies in 3rd quadrant so

                               

 Polar form of  is .

 

6.     -3.

Solution:

                   Let      then  and

                  So      

 Lies in 2nd quadrant.

                               

                                .

7.     .

   Solution:

                         Here . So  and.

    Here  lies in 1st quadrant. So

                                      And.

    So the polar representation of  is.

8.     .

Solution:

                   .

Comparing  with  we have

                   ,

                   

 And        

Hence      .

 

Quadratic equation

      The equation of the form, where  are real and  is called quadratic equation.

The solution of this equation is given by

                                

       Now if  then this quadratic equation will have imaginary roots.

      This quadratic equation has at least one root.

 

Exercise of NCERT

Solve each of the following equatin:

1.    

Solution:

                   

                                        

2.    

Solution:

                               

                          

3.    

Solution:

                               

                                   .

4.    

Solution: 

                 

                                         

                                 

                                           .

5.    

     Solution:

                                     

                                          .

6.    

Solution:

                               .

 

7.    

Solution:

                               .

 

8.    

Solution:

                               

                                   .

 

9.    

Solution:

                               .

 

10. 

Solution:

                               .

 

11. Convert  into polar form

Solution:

                   Let

                                   

                                     .

 and

 

   So           

Since  lies in 2nd quadrant so

                   

 Polar form of  is      

                   .

 

TRIGNOMETRIC OR POLAR FORM:

            Let z = x + iy be a complex number represented by a point P(x, y) in the Argand plane. Then by geometrical representation we have

OP =   and    ϴ = arg (z)

 

 

                                                                                P(x, y)

          

                                                                    O   ϴ           M

                                                                                               

 

 

 

                  In       POM, we have

                  Cos ϴ =  =    implies x = cos ϴ

sin ϴ =  =    implies  y = sin ϴ

z =     (cos ϴ + i sin ϴ)

z =    r (cos ϴ + i sin ϴ) where   = r and ϴ = arg (z)

This form of z is called the polar form of z.

In general, z =     (cos (2n + ϴ) + i sin (2n + ϴ)) where   = r and ϴ = arg (z)

 

In the graph plotted below, complex number in the polar (or trigonometric) form has been represented. The complex number z = 2.29 + 1.47i

 

 

 

EQUALITY OF COMPLEX NUMBERS:

              Let us take 2 complex numbers z₁ and z₂ where

                        z₁ = a₁ + i b₁

            And    z₂ = a₂ + i b₂.

            Then z₁ and z₂ are said to be equal iff  a₁ = a₂ and  b₁ = b₂.

 

 

ALGREBRA OF COMPLEX NUMBERS

1.  ADDITION OF COMPLEX NUMBERS:

                        The addition of 2 complex numbers z₁ = a₁ + ib₁ and z₂ = a₂ + ib₂

                                           z₁ + z₂ = (a₁ + ib₁) + (a₂ + ib₂)

                                                         = (a₁ + a₂) + i (b₁ + b₂) 

                        Similarly we can add  z₁ , z₂ , z₃ , z₄ , ………. , zn  as

                                           z₁ + z₂ + ………. + zn  = (a₁ + ib₁) + (a₂ + ib₂) + …………… + (an + ibn)    

                                                                                    = (a₁ + a₂ + …………… + an) + i (b₁ + b₂ + …………… + bn)      

 

Example: Consider 2 complex numbers z₁ = 1 + 3i and z₂ = 5 – 1i. What will be z₁ + z₂ =?

            Solution:

                                      z₁ + z₂ = (1 + 3i) + (5 – 1i)

                                                    = (1 + 5) + i (3 – 1)

                                                    = 6 + 2i      

The graph plotted below is the Victoria representation of addition of complex numbers. 

 

   

            

2.     SUBTRACTION OF COMPLEX NUMBERS:

 

            The subtraction of 2 complex numbers z₁ = a₁ + ib₁ and z₂ = a₂ + ib₂

 

                                                   z₁ - z₂   = (a₁ + ib₁) - (a₂ + ib₂)

                                                                  = (a₁ - a₂) + i (b₁ - b₂) 

 

            Similarly we can add z₁, z₂, z₃, z₄… zn

 

                          z₁ - z₂ - ………. - Zn = (a₁ + ib₁) - (a₂ + ib₂) - …………… - (an + ibn)   

                                                                           = (a₁ - a₂ - …………… - an) + i (b₁ - b₂ - …………… - bn)

 

Example: Subtract z₁ = 1 + 3i from z₂ = 4 + 2i.

            Solution:

                                    z₁ = 1 + 3i

                                    z₂ = 4 + 2i

                                    z₂ - z₁ = (4 + 2i) - (1 + 3i)

                                                 = (4 – 1) + (2 – 3) i

                                                 = 3 – i

              In the graph plotted below, it is clear that negative of z₂ = 1 + 3i is taken.  It is so because we subtracting z₂ from z₁. So, we can write

                                    z₂ - z₁ = (4 + 2i) - (1 + 3i)

                                                 = (4 + 2i) + (-1 + (-3) i)            

                                                 = 3 - i

 

 

3.     MULTIPLICATION OF COMPLEX NUMBERS:

      The multiplication of 2 complex numbers z₁ = a₁ + ib₁ and z₂ = a₂ + ib₂

                           Z₁ x z₂ = (a₁ + ib₁) x (a₂ + ib₂)

                                         = (a₁a₂ - b₁b₂) + i (a₁b₂ + a₂b₁) 

                                         =  ( Re(z₁)Re(z₂) – Im(z₁)Im(z₂) ) + i (Re(z₁)Im(z₂) + Re(z₂)Im(z₁) )

                    

NOTE:

          The product z₁ x z₂ can also be obtained if we actually carryout the multiplication (a₁ + ib₁) x (a₂ + ib₂) as given below:

 

                            (a₁ + ib₁) x (a₂ + ib₂) = a₁a₂ + ia₁b₂ + ia₂b₁ + b₁b₂)

                                                                       = (a₁a₂ - b₁b₂) + i (a₁b₂ + a₂b₁) 

 

Example: Multiply z₁ = 3 - i and z₂ = 2 + 2i.

 

Solution:

            We know that

                                     Z₁ x z₂ = (a₁a₂ - b₁b₂) + i (a₁b₂ + a₂b₁) 

        

                                             Z₁ = 3 - i = a₁ + ib₁  

                                             Z₂ = 2 + 2i = a₂ + ib₂ 

                                             Z₁ x z₂ = 8 + 4i

 

The graph plotted below is the vectorial representation of the above example. 

 

 

 

 

 

 

4.  DIVISION OF COMPLEX NUMBERS:

                  The division of a complex number z₁ by a non - zero complex number z₂ is defined as the multiplication of z₁ by the inverse of z₂ and is denoted by.

                  Thus,   = z₁ x () = z₁ x (  )

                  The division of 2 complex numbers z₁ = a₁ + ib₁ and z₂ = a₂ + ib₂

                                       =  

       To further simplify it we will rationalize it by multiplying numerator and denominator by a₂ - ib₂. By doing this we will get denominator as real number and we can easily separate the real and imaginary part.

                                         =     

 

                                               =     x    

 

                                               =     x  

 

                                                =    

 

                                                =     + i

 

 

The graph plotted below is an example of vectorial representation of a division of 2 complex numbers z₁ = 24.46 + 8.02i and z₂ = 2.01 – 3.41i.

 

 

CONJUGATE OF A COMPLEX NUMBER

            Let z = a + ib be a complex number. Then the conjugate of z is denoted by  and is equal to a – ib.

                                                   z = a + ib → a – ib

            It follows from the definition that conjugate of a complex number is obtained by replacing i by –i.

 

            The graph plotted below is the vectorial representation of a conjugate of complex number.

 

 

Theorem: Let z₁, z₂ and z₃ be the complex numbers. Then,

1.   = z

       Proof:  

                        Let z = a + ib

                                 = a – ib

                                =    = = z

                            Hence proved.

2.  Z +    = 2 Re (z)

Proof: 

                         Let z = a + ib

                                  = a – ib

                                z +   = (a + ib) + (a – ib)

                                            = 2a = 2 Re (z)

                              Hence proved.

 

3.     z -    = 2 Im ( z )

Proof:  

            Let z = a + ib

                                 = a – ib

                        z -   = (a + ib) - (a – ib)

                                  = 2ib = 2 i Im (z)

                              Hence proved.

 

4.        If z =   , then z is purely real.

Proof: 

              Let z = a + ib

                                   = a – ib

z =  

            i.e.   (a + ib) = (a – ib)

                                      2 x ib = 0

                                      2 x Im (z) = 0

                                      Im (z) = 0

           Thus, z is purely real      

                             Hence proved.

 

5.  z +    = 0 implies z is purely imaginary.

Proof:

              Let z = a + ib

                                   = a – ib

                          z +  = (a + ib) + (a – ib)

                                    = 2a = 2 Re (z) = 0

                      Implies a = 0

          Therefore, z is purely imaginary.

                          Hence proved.

 

6.   z   =   

Proof:

                         z   = (a + ib) x (a – ib)

                                      =

                                = 

                   Hence proved.

 

MODULUS OF A COMPLEX NUMBER:

            The modulus of a complex number z = a + ib is denoted by  and is defined as

                                         =    =   

                                    Clearly,    0 for all z є Ȼ

 

            The graph plotted below shows the modulus of a complex number.

 

 

 

Theorem: If z₁, z₂, z₃ є Ȼ, then

 i.      Left-Right Arrow:   = 0         z = 0         i.e. Re( z ) = Im( z ) = 0

Proof:

                           = 0

                                       = 0

                                         = 0  

                                         a = 0 and b = 0

                                          Re (z) = Im (z) = 0

                   Hence proved .

 

ii.       =  =

Proof: 

            Let z = a + ib. Then,  = a – ib and –z = - a – ib

                              =   

                               =     =   

                            =    = 

              Hence,  =  =

                         Hence proved.

 

iii.      -   Re (z)     ;  -   Im (z)   

Proof:

                         -     a       and    -     b      

                          -   Re (z)       and    -   Im (z)   

                             Hence proved.

 

iv.      z x  =

Proof:

             Let  z = a + ib  and   = a – ib

             Then, z x  = (a + ib) (a – ib)

                                 =  +  =     = 

        
RECIPROCAL OF COMPLEX NUMBER:

            Let z = a + ib be a complex number. Then the reciprocal of z is denoted by   , where   .

                                                          

            Multiplying both numerator and denominator by the conjugate  of z

                                        =     x      

 

                                        =  

 

                                        =    

 

                                        =     - i  

 

Thus, the multiplicative inverse of a non – zero complex number z is same as it’s reciprocal and is given by

 

                                      + i   =   .

 

 SQUARE ROOTS OF A COMPLEX NUMBER:

            Consider a complex number z = a + ib such that   = x + iy. Here both x and y are real numbers.   Then,

                                          = x + iy

                                           a + ib   =

                                                        =() + 2 i xy

            Equating the real and imaginary part

                                             a   = ()

                                             b = 2 xy

            Now,   

                                     () ² =   + 4

                                     () ²   =    +

                                      ()   =        

            On further solving the equation we can conclude,

                         = {  + i  }   , if Im (z) > 0

                         = {  - i  }     , if Im (z) < 0

            Here is a vectorial representation of the square root of one of the complex number.

 

Question: Find the square root of 7 – 24i.

            Solution:

                         Let   = x + iy.

                                7 – 4i = 

                                7 – 4i = () + 2 i xy

                Equating the real and imaginary part

                                    7   = ()                                   --------- (1)

                                  -24 = 2 xy                                            -------- (2)

            Now,

                             () ²= + 4

                            () ²= 49

                            ()  = 25                                   -------- (3)

On solving the values for x and y from the equations (1) and (2), we get

                                                     = 16   implies x = 4

                                                     = 9     implies y =    --------Since in (2),

            2 xy is negative, so we will take the values of x and y of opposite sign.

            i.e. either   x = 4 and y = -3    or     x = -4 and y = 3

            Hence,    =  .