TWO DIMENSIONAL ANALYTICAL GEOMETRY-II

Introduction:

We are familiar with the concept of vectors, (vectus in Latin means “to carry”) from our XI standard text book. Further the modern version of Theory of Vectors arises from the ideas of Wessel(1745-1818) and Argand (1768-1822) when they attempt to describe the complex numbers geometrically as a directed line segment in a coordinate plane. We have seen that a vector has magnitude and direction and two vectors with same magnitude and direction regardless of positions of their initial points are always equal.

We also have studied addition of two vectors, scalar multiplication of vectors, dot product, and cross product by denoting an arbitrary vector by the notation https://www.brainkart.com/media/extra3/sdKAwVV.jpg or a1ˆi + a2ˆj + a3ˆk.

.

The vector algebra has a few direct applications in physics and it has a lot of applications along with vector calculus in physics, engineering, and medicine. Some of them are mentioned below.

*    To calculate the volume of a parallelepiped, the scalar triple product is used.

*    To find the work done and torque in mechanics, the dot and cross products are respectiveluy used.

*    To introduce curl and divergence of vectors, vector algebra is used along with calculus. Curl and divergence are very much used in the study of electromagnetism, hydrodynamics, blood flow, rocket launching, and the path of a satellite.

Geometric Introduction To Vectors :

         A vector http://www.brainkart.com/media/extra3/96QIiD5.jpg is represented as a directed straight line  segment in a 3-dimensional space R3 , with an  initial  point A  =  (a1a2a3) ∈ R3 and an end point  B  = (b1b2b3 )∈ R3 , and  it is denoted by http://www.brainkart.com/media/extra3/8Rc0wfa.jpg.  The length of the line segment AB is the magnitude of the vector http://www.brainkart.com/media/extra3/96QIiD5.jpg and the direction from to is the direction of the vector http://www.brainkart.com/media/extra3/96QIiD5.jpg.

Hereafter, a vector will be interchangeably denoted  by http://www.brainkart.com/media/extra3/96QIiD5.jpg or  http://www.brainkart.com/media/extra3/8Rc0wfa.jpg. Two vectors http://www.brainkart.com/media/extra3/8Rc0wfa.jpg  and http://www.brainkart.com/media/extra3/bs4m4vv.jpg in R3 are said to be equal if and only if the length AB is equal to the length CD and the direction from to is parallel to the direction from to . If http://www.brainkart.com/media/extra3/8Rc0wfa.jpg and http://www.brainkart.com/media/extra3/bs4m4vv.jpg are equal, we write http://www.brainkart.com/media/extra3/8Rc0wfa.jpg http://www.brainkart.com/media/extra3/bs4m4vv.jpg , and http://www.brainkart.com/media/extra3/bs4m4vv.jpg is called a translate of http://www.brainkart.com/media/extra3/8Rc0wfa.jpg.

Given a vector http://www.brainkart.com/media/extra3/8Rc0wfa.jpg , the length of the vector |http://www.brainkart.com/media/extra3/8Rc0wfa.jpgis calculated by

http://www.brainkart.com/media/extra3/R8NCFcN.jpg

where is (a1 , a2 , a3 ) and is (b1 , b2 , b3 ). In particular, if a vector is the position vector http://www.brainkart.com/media/extra3/idIqMXk.jpg of (b1 , b2 , b3 ), then its length is 

http://www.brainkart.com/media/extra3/0obcAGV.jpg

A vector having length 1 is called a unit vector. We the notation uˆ , for a unit vector. Note that iˆ, ˆ, and kˆ  use are unit vectors and http://www.brainkart.com/media/extra3/ILwwcz5.jpg is the unique vector with length 0 . The direction of http://www.brainkart.com/media/extra3/ILwwcz5.jpg is specified according to the context.

The addition and scalar multiplication on vectors in 3-dimensional space are defined by

http://www.brainkart.com/media/extra3/APThKoM.jpg

To see the geometric interpretation of http://www.brainkart.com/media/extra3/sdKAwVV.jpg http://www.brainkart.com/media/extra3/idIqMXk.jpg, let http://www.brainkart.com/media/extra3/sdKAwVV.jpg and http://www.brainkart.com/media/extra3/idIqMXk.jpg, denote the position vectors of = (a1 , a2 , a3 ) and = (b1 , b2 , b3 ) , respectively. Translate the position vector http://www.brainkart.com/media/extra3/idIqMXk.jpg to the vector with initial point as and end point as = (c1 , c2 , c3 ) , for a suitable (c1 c2 c3 ) ∈ R3. See the  Fig (6.2). Then, the position vector http://www.brainkart.com/media/extra3/wOHZrke.jpg of the point (c1 , c2 , c3 ) is equal to http://www.brainkart.com/media/extra3/sdKAwVV.jpg http://www.brainkart.com/media/extra3/idIqMXk.jpg.

The vector αhttp://www.brainkart.com/media/extra3/sdKAwVV.jpg is another vector parallel to http://www.brainkart.com/media/extra3/sdKAwVV.jpg and its length is magnified (if α > 1) or contracted  (if 0 < α < 1) . If α < 0 , then α http://www.brainkart.com/media/extra3/sdKAwVV.jpg is a vector whose magnitude is | α | times that of http://www.brainkart.com/media/extra3/sdKAwVV.jpg and direction opposite to that of http://www.brainkart.com/media/extra3/sdKAwVV.jpg. In particular, if α = −1, then αhttp://www.brainkart.com/media/extra3/sdKAwVV.jpg= −http://www.brainkart.com/media/extra3/sdKAwVV.jpgis the vector with same length and direction opposite to that of http://www.brainkart.com/media/extra3/sdKAwVV.jpg. See Fig. 6.3

http://www.brainkart.com/media/extra3/8ZqE09E.jpg

 

 

Scalar Product And Vector Product :

The Scalar Product And Vector Product Of Two Vectors As Follows.

 1 . Geometrical interpretation

Geometrically, if http://www.brainkart.com/media/extra3/sdKAwVV.jpg is an arbitrary vector and nˆ is a unit vector, then http://www.brainkart.com/media/extra3/sdKAwVV.jpg nˆ  is the projection of the vector http://www.brainkart.com/media/extra3/sdKAwVV.jpg on the straight line on which nˆ  lies. The quantity http://www.brainkart.com/media/extra3/sdKAwVV.jpg  nˆ   is positive if the angle between http://www.brainkart.com/media/extra3/sdKAwVV.jpg and nˆ is acute, see Fig. 6.4 and negative if the angle between http://www.brainkart.com/media/extra3/sdKAwVV.jpg and nˆ is obtuse see Fig. 6.5.

http://www.brainkart.com/media/extra3/dtY02MR.jpg

If http://www.brainkart.com/media/extra3/sdKAwVV.jpg and http://www.brainkart.com/media/extra3/idIqMXk.jpg are arbitrary non-zero vectors, then | http://www.brainkart.com/media/extra3/sdKAwVV.jpg  http://www.brainkart.com/media/extra3/idIqMXk.jpg | = http://www.brainkart.com/media/extra3/id5ILvX.jpg and so http://www.brainkart.com/media/extra3/sdKAwVV.jpg  http://www.brainkart.com/media/extra3/idIqMXk.jpg | means either the length of the straight line segment obtained by projecting the vector | http://www.brainkart.com/media/extra3/idIqMXk.jpg | http://www.brainkart.com/media/extra3/sdKAwVV.jpg along  the direction of  http://www.brainkart.com/media/extra3/idIqMXk.jpg or the length of the line segment obtained by projecting  the vector | http://www.brainkart.com/media/extra3/sdKAwVV.jpg | http://www.brainkart.com/media/extra3/idIqMXk.jpg along the direction of http://www.brainkart.com/media/extra3/sdKAwVV.jpg. We recall that http://www.brainkart.com/media/extra3/sdKAwVV.jpg  http://www.brainkart.com/media/extra3/idIqMXk.jpg =| http://www.brainkart.com/media/extra3/sdKAwVV.jpg | | http://www.brainkart.com/media/extra3/idIqMXk.jpg | cosθ , where θ is the angle between the two vectors http://www.brainkart.com/media/extra3/sdKAwVV.jpg and  http://www.brainkart.com/media/extra3/idIqMXk.jpg. We  recall that the angle between  http://www.brainkart.com/media/extra3/sdKAwVV.jpg  and  http://www.brainkart.com/media/extra3/idIqMXk.jpg is defined as the measure from http://www.brainkart.com/media/extra3/sdKAwVV.jpg to  http://www.brainkart.com/media/extra3/idIqMXk.jpg in the counter clockwise direction.

The vector http://www.brainkart.com/media/extra3/sdKAwVV.jpg  http://www.brainkart.com/media/extra3/idIqMXk.jpg is either http://www.brainkart.com/media/extra3/ILwwcz5.jpg or a vector perpendicular to the plane parallel to both http://www.brainkart.com/media/extra3/sdKAwVV.jpg and http://www.brainkart.com/media/extra3/idIqMXk.jpg having magnitude as the area of the parallelogram formed by coterminus vectors parallel to http://www.brainkart.com/media/extra3/sdKAwVV.jpg and http://www.brainkart.com/media/extra3/idIqMXk.jpg. If http://www.brainkart.com/media/extra3/sdKAwVV.jpg and http://www.brainkart.com/media/extra3/idIqMXk.jpg are non-zero vectors, then the magnitude of http://www.brainkart.com/media/extra3/sdKAwVV.jpg  b can be calculated by the formula

http://www.brainkart.com/media/extra3/sdKAwVV.jpg  http://www.brainkart.com/media/extra3/idIqMXk.jpg | = | a | | b | | sinθ |, where θ is the angle between http://www.brainkart.com/media/extra3/sdKAwVV.jpg and http://www.brainkart.com/media/extra3/idIqMXk.jpg.

Two vectors are said to be coterminus if they have same initial point.

 

2. Application Of Dot And Cross Products In Plane Trigonometry :

We apply the concepts of dot and cross products of two vectors to derive a few formulae in plane trigonometry.

 

1.     (Cosine formulae)

With usual notations, in any triangle ABC, prove the following by vector method.

*    a2 = b2 + c2 - 2bc cos A 

*    b2 = c2 + a2 - 2ca cos B

*    c2 = a2 + b2 - 2ab cos C

Solution

With usual notations in triangle ABC, we have 

http://www.brainkart.com/media/extra3/XFk7qKg.jpg

a2 = b2 + c2 + 2bc cos(π - A)

a2 = b2 + c2 - 2bc cos A .

The results in (ii) and (iii) are proved in a similar way.

 

2.  With usual notations, in any triangle ABC, prove the following by vector method.

(ia cos cos B 

(ib cos cos C

(iii) c cos cos A

Solution :

With usual notations in triangle ABC, we have http://www.brainkart.com/media/extra3/XCcVjWq.jpgahttp://www.brainkart.com/media/extra3/6XH7hfr.jpg http://www.brainkart.com/media/extra3/idIqMXk.jpg , and

http://www.brainkart.com/media/extra3/wdVidW1.jpg

 a2 = ab cos ac cos B

Therefore cos cos . The results in (ii) and (iii) are proved in a similar way.

 

3.     By vector method, prove that cos(α β ) = cosα cos β − sin α sin β .

Solution

Let  aˆ   = http://www.brainkart.com/media/extra3/OslYbtq.jpg and bˆ = http://www.brainkart.com/media/extra3/L4Qwcq7.jpg be the unit vectors and which make angles  α  and  β , respectively, with positive  -axis, where  A  and  B  are as in the Fig. 6.8. Draw  AL  and  BM  perpendicular to  the x-axis.

http://www.brainkart.com/media/extra3/0r66GCD.jpg

On the other hand, from (1) and (2)

aˆ   bˆ   = (cosαiˆ − sin α ˆj (cos β iˆ + sin βˆj) = cosα cos β − sin α sin β----------------------------(4)

From (3) and (4),

we get cos(α β ) = cosα cos β − sin α sin β.

 

4.     Prove by vector method that sin(α − β ) = sin α cos β − cosα sin β .

Solution 

Let  aˆ = http://www.brainkart.com/media/extra3/Qg0u1ND.jpg and http://www.brainkart.com/media/extra3/idIqMXk.jpg = http://www.brainkart.com/media/extra3/jwTptGB.jpg  be the unit vectors making  angles α  and  β  respectively, with positive  -axis,  where A  and  B  are  as  shown  in  the  Fig.  6.10. Then,   we get aˆ = cosαiˆ + sin α ˆand bˆ = cos β iˆ + sin β ˆ,

http://www.brainkart.com/media/extra3/yh5ZoPO.jpg

The angle between aˆ and bˆ is α − β and, the vectors bˆ, aˆ, kˆ  form a right-handed system.

Hence, we get

  ×  bˆ | bˆ | | aˆ | sin(α - β )kˆ = sin(α - β )kˆ                                     ………………(1)

On the other hand,

http://www.brainkart.com/media/extra3/Ql37bqh.jpg = (sin α cos β - cosα sin β )kˆ              ... (2)

Hence, equations (1) and (2), leads to

sin(α - β ) = sin α cos β - cosα sin β .

 

3. Application of dot and cross products in Geometry :

1.  (Apollonius theorem)

If is the midpoint of the side BC of a triangle ABC, show by vector method that

http://www.brainkart.com/media/extra3/bDvV5MT.jpg

Solution

Let be the origin, http://www.brainkart.com/media/extra3/idIqMXk.jpg be the position vector of and http://www.brainkart.com/media/extra3/wOHZrke.jpg be the position vector of C. Now is the midpoint of BC , and so the, position vector of D is http://www.brainkart.com/media/extra3/obj6YTi.jpg

Therefore , we have  

http://www.brainkart.com/media/extra3/JisL7MG.jpg

http://www.brainkart.com/media/extra3/ovpyeiq.jpg

Scalar triple product

 

1 .For a given set of three vectors http://www.brainkart.com/media/extra3/sdKAwVV.jpghttp://www.brainkart.com/media/extra3/idIqMXk.jpg , and http://www.brainkart.com/media/extra3/wOHZrke.jpg , the scalar (http://www.brainkart.com/media/extra3/sdKAwVV.jpg× http://www.brainkart.com/media/extra3/idIqMXk.jpg  http://www.brainkart.com/media/extra3/wOHZrke.jpg is called a scalar triple product of  http://www.brainkart.com/media/extra3/sdKAwVV.jpghttp://www.brainkart.com/media/extra3/idIqMXk.jpghttp://www.brainkart.com/media/extra3/wOHZrke.jpg.

Given any three vectors http://www.brainkart.com/media/extra3/sdKAwVV.jpghttp://www.brainkart.com/media/extra3/idIqMXk.jpghttp://www.brainkart.com/media/extra3/wOHZrke.jpg and c the following are scalar triple products:

http://www.brainkart.com/media/extra3/IfDUVim.jpg

 

Geometrical interpretation of scalar triple product :

Geometrically, the absolute value of the scalar triple product http://www.brainkart.com/media/extra3/sdKAwVV.jpg× http://www.brainkart.com/media/extra3/idIqMXk.jpg) .http://www.brainkart.com/media/extra3/wOHZrke.jpg. is the volume of the parallelepiped formed by using the three vectors http://www.brainkart.com/media/extra3/sdKAwVV.jpghttp://www.brainkart.com/media/extra3/idIqMXk.jpg and http://www.brainkart.com/media/extra3/wOHZrke.jpg as co-terminus edges. Indeed, the magnitude of the vector (http://www.brainkart.com/media/extra3/sdKAwVV.jpg × http://www.brainkart.com/media/extra3/idIqMXk.jpg) is the area of the parallelogram formed by using http://www.brainkart.com/media/extra3/sdKAwVV.jpg and http://www.brainkart.com/media/extra3/idIqMXk.jpg ; and the direction of the vector (http://www.brainkart.com/media/extra3/sdKAwVV.jpg × http://www.brainkart.com/media/extra3/idIqMXk.jpg) is perpendicular to the plane parallel to both http://www.brainkart.com/media/extra3/sdKAwVV.jpg and http://www.brainkart.com/media/extra3/idIqMXk.jpg.

http://www.brainkart.com/media/extra3/KBkw6EZ.jpg

Therefore, | (http://www.brainkart.com/media/extra3/sdKAwVV.jpg × http://www.brainkart.com/media/extra3/idIqMXk.jpg http://www.brainkart.com/media/extra3/wOHZrke.jpg | is | http://www.brainkart.com/media/extra3/sdKAwVV.jpg × http://www.brainkart.com/media/extra3/idIqMXk.jpg || http://www.brainkart.com/media/extra3/wOHZrke.jpg || cosθ | , where θ is the angle between http://www.brainkart.com/media/extra3/sdKAwVV.jpg × http://www.brainkart.com/media/extra3/idIqMXk.jpg and . From  Fig. 6.17, we observe that | http://www.brainkart.com/media/extra3/wOHZrke.jpg | | cosθ | is the height of the parallelepiped formed by using the three vectors as adjacent vectors. Thus, | (http://www.brainkart.com/media/extra3/sdKAwVV.jpg × http://www.brainkart.com/media/extra3/idIqMXk.jpg  http://www.brainkart.com/media/extra3/wOHZrke.jpg | is the volume of the parallelepiped.

The following theorem is useful for computing scalar triple products.

 

1.

http://www.brainkart.com/media/extra3/leMBAsP.jpg

Proof

By definition, we have

http://www.brainkart.com/media/extra3/hGofj8j.jpg

which completes the proof of the theorem.

 

Properties of the scalar triple product

2.

For any three vectors http://www.brainkart.com/media/extra3/sdKAwVV.jpg, http://www.brainkart.com/media/extra3/idIqMXk.jpg and http://www.brainkart.com/media/extra3/wOHZrke.jpg, (http://www.brainkart.com/media/extra3/sdKAwVV.jpg × http://www.brainkart.com/media/extra3/idIqMXk.jpg  http://www.brainkart.com/media/extra3/wOHZrke.jpg http://www.brainkart.com/media/extra3/sdKAwVV.jpg  (http://www.brainkart.com/media/extra3/idIqMXk.jpg × http://www.brainkart.com/media/extra3/wOHZrke.jpg) .

Proof

http://www.brainkart.com/media/extra3/O4il4d2.jpg

Hence the theorem is proved.

3.

The scalar triple product preserves addition and scalar multiplication. That is,

http://www.brainkart.com/media/extra3/9Jd3ndV.jpg

Proof

Using the properties of scalar product and vector product, we get

http://www.brainkart.com/media/extra3/vNwnsZ9.jpg

Using the first statement of this result, we get the following.

http://www.brainkart.com/media/extra3/Mrfi0ij.jpg

Similarly, the remaining equalities are proved.

We have studied about coplanar vectors in XI standard as three nonzero vectors of which, one can be expressed as a linear combination of the other two. Now we use scalar triple product for the characterisation of coplanar vectors.

 

4.

The scalar triple product of three non-zero vectors is zero if, and only if, the three vectors are coplanar.

Proof

Let http://www.brainkart.com/media/extra3/sdKAwVV.jpghttp://www.brainkart.com/media/extra3/idIqMXk.jpghttp://www.brainkart.com/media/extra3/wOHZrke.jpg be any three non-zero vectors. Then,

http://www.brainkart.com/media/extra3/sdKAwVV.jpg × http://www.brainkart.com/media/extra3/idIqMXk.jpg  http://www.brainkart.com/media/extra3/wOHZrke.jpg = 0  http://www.brainkart.com/media/extra3/wOHZrke.jpg is perpendicular to http://www.brainkart.com/media/extra3/sdKAwVV.jpg × http://www.brainkart.com/media/extra3/idIqMXk.jpg

 http://www.brainkart.com/media/extra3/wOHZrke.jpg lies in the plane which is parallel to both http://www.brainkart.com/media/extra3/sdKAwVV.jpg and http://www.brainkart.com/media/extra3/idIqMXk.jpg

http://www.brainkart.com/media/extra3/sdKAwVV.jpghttp://www.brainkart.com/media/extra3/idIqMXk.jpghttp://www.brainkart.com/media/extra3/wOHZrke.jpg are coplanar.

 

5.

Three vectors http://www.brainkart.com/media/extra3/sdKAwVV.jpghttp://www.brainkart.com/media/extra3/idIqMXk.jpghttp://www.brainkart.com/media/extra3/wOHZrke.jpg are coplanar if, and only if, there exist scalars rs R such that atleast one of them is non-zero and rhttp://www.brainkart.com/media/extra3/sdKAwVV.jpgshttp://www.brainkart.com/media/extra3/idIqMXk.jpg thttp://www.brainkart.com/media/extra3/wOHZrke.jpg http://www.brainkart.com/media/extra3/ILwwcz5.jpg .

Proof

http://www.brainkart.com/media/extra3/REsyUzp.jpg

 

6

http://www.brainkart.com/media/extra3/rAOztwN.jpg

Proof

Applying the distributive law of cross product and using

http://www.brainkart.com/media/extra3/pydsHsc.jpg

Vector triple product

5.

For a given set of three vectors  http://www.brainkart.com/media/extra3/sdKAwVV.jpghttp://www.brainkart.com/media/extra3/idIqMXk.jpghttp://www.brainkart.com/media/extra3/wOHZrke.jpg , the vector http://www.brainkart.com/media/extra3/sdKAwVV.jpg×(http://www.brainkart.com/media/extra3/idIqMXk.jpg × http://www.brainkart.com/media/extra3/wOHZrke.jpg) is called a  vector triple product.

Proof:

Given any three vectors http://www.brainkart.com/media/extra3/sdKAwVV.jpghttp://www.brainkart.com/media/extra3/idIqMXk.jpg,http://www.brainkart.com/media/extra3/wOHZrke.jpg the following are vector triple products :

http://www.brainkart.com/media/extra3/zOU5xv5.jpg

Using the well known properties of the vector product, we get the following theorem.

 

7

The vector triple product satisfies the following properties.

http://www.brainkart.com/media/extra3/TlZi50w.jpg

http://www.brainkart.com/media/extra3/cSkbKEl.jpg

The following theorem gives a simple formula to evaluate the vector triple product.

 

8.  (Vector Triple product expansion)

For any three vectors http://www.brainkart.com/media/extra3/sdKAwVV.jpghttp://www.brainkart.com/media/extra3/idIqMXk.jpghttp://www.brainkart.com/media/extra3/wOHZrke.jpg we have http://www.brainkart.com/media/extra3/732auPw.jpg

Proof

Let us choose the coordinate axes as follows :

Let -axis be chosen along the line of action of http://www.brainkart.com/media/extra3/sdKAwVV.jpg-axis be chosen in the plane passing through http://www.brainkart.com/media/extra3/sdKAwVV.jpg and parallel to http://www.brainkart.com/media/extra3/idIqMXk.jpg , and -axis be chosen perpendicular to the plane containing http://www.brainkart.com/media/extra3/sdKAwVV.jpg and http://www.brainkart.com/media/extra3/idIqMXk.jpg. Then, we have

http://www.brainkart.com/media/extra3/CNYuWAi.jpg

Jacobi’s Identity and Lagrange’s Identity

 

9  . (Jacobi’s identity)

For any three vectors http://www.brainkart.com/media/extra3/sdKAwVV.jpghttp://www.brainkart.com/media/extra3/idIqMXk.jpghttp://www.brainkart.com/media/extra3/wOHZrke.jpg, we have http://www.brainkart.com/media/extra3/VyMIsSs.jpg = http://www.brainkart.com/media/extra3/ILwwcz5.jpg.

Proof

Using vector triple product expansion, we have

http://www.brainkart.com/media/extra3/CqFwPD5.jpg

Adding the above equations and using the scalar product of two vectors is commutative, we get

http://www.brainkart.com/media/extra3/lU4VAno.jpg.

 

10.  (Lagrange’s identity)

http://www.brainkart.com/media/extra3/cA1kCUp.jpg

Proof

Since dot and cross can be interchanged in a scalar product, we get

http://www.brainkart.com/media/extra3/zeTa3Vq.jpg

 

11

Prove that http://www.brainkart.com/media/extra3/sf4jRkh.jpg

Solution

Using the definition of the scalar triple product, we get

http://www.brainkart.com/media/extra3/YXnTloJ.jpg                        ..............(1)

By treating (http://www.brainkart.com/media/extra3/idIqMXk.jpg× http://www.brainkart.com/media/extra3/wOHZrke.jpg) as the first vector in the vector triple product, we find

http://www.brainkart.com/media/extra3/SqXpKPN.jpg

Using this value in (1), we get

http://www.brainkart.com/media/extra3/LkvaYYW.jpg

 

12 .Prove that http://www.brainkart.com/media/extra3/88b8b9J.jpg.

Solution

Treating (http://www.brainkart.com/media/extra3/sdKAwVV.jpg × http://www.brainkart.com/media/extra3/idIqMXk.jpg ) as the first vector on the right hand side of the given equation and using the vector triple product expansion, we get

http://www.brainkart.com/media/extra3/09XuoOi.jpg

 

13. For any four vectors http://www.brainkart.com/media/extra3/sdKAwVV.jpghttp://www.brainkart.com/media/extra3/idIqMXk.jpghttp://www.brainkart.com/media/extra3/wOHZrke.jpghttp://www.brainkart.com/media/extra3/11F4Juc.jpg, we have

http://www.brainkart.com/media/extra3/eZmqNWC.jpg

Solution

Taking http://www.brainkart.com/media/extra3/wlqJLhl.jpg= (http://www.brainkart.com/media/extra3/sdKAwVV.jpg × http://www.brainkart.com/media/extra3/idIqMXk.jpg )  as a single vector and  using the vector triple product expansion, we get

http://www.brainkart.com/media/extra3/Q1ooljW.jpg

14.http://www.brainkart.com/media/extra3/lHGxwEJ.jpg

State whether they are equal.

Solution

http://www.brainkart.com/media/extra3/SYGEybq.jpg

 

15. http://www.brainkart.com/media/extra3/qd6UUQX.jpg

Solution (i)

By definition,

http://www.brainkart.com/media/extra3/2yZZokj.jpg

On the other hand, we have

http://www.brainkart.com/media/extra3/wqINVUy.jpg

Therefore, from equations (1) and (2), identity (i) is verified.

The verification of identity (ii) is left as an exercise to the reader.

Application of Vectors to 3-Dimensional Geometry :

Vectors provide an elegant approach to study straight lines and planes in three dimension. All straight lines and planes are subsets of R3. For brevity, we shall call a straight line simply as line. A plane is a surface which is understood as a set of points in R3 such that , if AB, and are any three non-collinear points of , then the line passing through any two of them is a subset of P. Two planes are said to be intersecting if they have at least one point in common and at least one point which lies on one plane but not on the other. Two planes are said to be coincident if they have exactly the same points. Two planes are said to be parallel but not coincident if they have no point in common.

 

1. Different forms of equation of a straight line

A straight line can be uniquely fixed if

*    a point on the straight line and the direction of the straight line are given

*    two points on the straight line are given

We find equations of a straight line in vector and Cartesian form. To find the equation of a straight line in vector form, an arbitrary point with position vector http://www.brainkart.com/media/extra3/N41G6fN.jpg on the straight line is taken and a relation satisfied by http://www.brainkart.com/media/extra3/N41G6fN.jpg is obtained by using the given conditions. This relation is called the vector equation of the straight line. A vector equation of a straight line may or may not involve parameters. If a vector equation involves parameters, then it is called a vector equation in parametric form. If no parameter is involved, then the equation is called a vector equation in non – parametric form.

 

2.  A point on the straight line and the direction of the straight line  are given

(A) Parametric form of vector equation

1. The vector equation of a straight line passing through a fixed point with position vector http://www.brainkart.com/media/extra3/sdKAwVV.jpg and parallel to a given vector http://www.brainkart.com/media/extra3/idIqMXk.jpg is http://www.brainkart.com/media/extra3/N41G6fN.jpg = http://www.brainkart.com/media/extra3/idIqMXk.jpg + thttp://www.brainkart.com/media/extra3/idIqMXk.jpg, where  R.

Proof

If http://www.brainkart.com/media/extra3/sdKAwVV.jpg is the position vector of a given point and http://www.brainkart.com/media/extra3/N41G6fN.jpg is the position vector of an arbitrary point  P on the straight line, then

http://www.brainkart.com/media/extra3/MNA64Dk.jpghttp://www.brainkart.com/media/extra3/N41G6fN.jpg http://www.brainkart.com/media/extra3/sdKAwVV.jpg.

http://www.brainkart.com/media/extra3/0n2kli3.jpg

This is the vector equation of the straight line in parametric form.

 (b) Non-parametric form of vector equation

Since http://www.brainkart.com/media/extra3/MNA64Dk.jpg is parallel to http://www.brainkart.com/media/extra3/idIqMXk.jpg , we have  http://www.brainkart.com/media/extra3/MNA64Dk.jpg × http://www.brainkart.com/media/extra3/idIqMXk.jpg http://www.brainkart.com/media/extra3/ILwwcz5.jpg

That is, (http://www.brainkart.com/media/extra3/N41G6fN.jpg − http://www.brainkart.com/media/extra3/sdKAwVV.jpg) × http://www.brainkart.com/media/extra3/idIqMXk.jpg = 0 .

This is known as the vector equation of the straight line in non-parametric form.

(c) Cartesian equation

Suppose is (xyz) , is (x1 , y1 , z1 ) and http://www.brainkart.com/media/extra3/idIqMXk.jpg b1 ˆi b2 ˆb3 ˆ. Then, substituting http://www.brainkart.com/media/extra3/N41G6fN.jpg x ˆi y ˆz ˆ, http://www.brainkart.com/media/extra3/sdKAwVV.jpg x1ˆy1ˆ j z1 ˆk  in (1) and comparing the coefficients of ˆi , ˆj, ˆ, we get

x − x1 = tb1 , − y1 = tb2 , − z1 = tb3                     ………….(4)

Conventionally (4) can be written as

http://www.brainkart.com/media/extra3/Jgto1ZU.jpg

which are called the Cartesian equations or symmetric equations of a straight line passing through the point (x1y1 , z1) and parallel to a vector with direction ratios b1b2b3.

3. Straight Line passing through two given points

(a) Parametric form of vector equation

Theorem 6.12

The parametric form of vector equation of a line passing through two given points whose position vectors are http://www.brainkart.com/media/extra3/sdKAwVV.jpg and http://www.brainkart.com/media/extra3/idIqMXk.jpg respectively is http://www.brainkart.com/media/extra3/rqTehtX.jpg R.

(b) Non-parametric form of vector equation

The above equation can be written equivalently in non-parametric form of vector equation as

http://www.brainkart.com/media/extra3/rqTehtX.jpg  = http://www.brainkart.com/media/extra3/ILwwcz5.jpg

(c) Cartesian form of equation

Suppose is (xyz) ,  is (x1y1 , z1 ) and is (x2 , y2 , z2). Then substituting http://www.brainkart.com/media/extra3/N41G6fN.jpg x ˆi y ˆ j z ˆk http://www.brainkart.com/media/extra3/sdKAwVV.jpg x1ˆi y1ˆ z1ˆk and http://www.brainkart.com/media/extra3/idIqMXk.jpg x2y2 ˆ z2ˆk in theorem 6.12 and comparing the coefficients of ˆi , ˆ jˆk , we get  − x1  = t(x2 − x1), − y1  = ty2 − y1), − z1  = t(z2 − z1 ) and so the Cartesian equations of a  line passing through two given points (x1y1z1) and (x2y2z2are given by

http://www.brainkart.com/media/extra3/sxS2JoW.jpg

From the above equation, we observe that the direction ratios of a line passing through two given points (x1 , y1 , z1) and (x2 , y2 , z2 ) are given by x2 − x1 , y2 − y1 , z2 − z1, which are also given by any three numbers proportional to them and in particular x1 − x2 , y1 − y2 , z1 − z2.

 

2.     A straight line passes through the point (1, 2, −3) and parallel to 4iˆ + 5 ˆ− 7kˆ . Find (i) vector equation in parametric form (ii) vector equation in non-parametric form (iii) Cartesian equations of the straight line.

Solution

The required line passes through (1, 2, −3) . So, the position vector of the point is iˆ + 2 ˆ− 3kˆ.

Let http://www.brainkart.com/media/extra3/sdKAwVV.jpg ˆi + 2 ˆ− 3ˆand http://www.brainkart.com/media/extra3/idIqMXk.jpg = 4ˆ+ 5 ˆ− 7ˆ. Then, we have

Let a = i + 2 j - 3k and b = 4i + 5 j - 7k . Then, we have

(i) vector equation of the required straight line in parametric form is http://www.brainkart.com/media/extra3/N41G6fN.jpg = http://www.brainkart.com/media/extra3/sdKAwVV.jpg + thttp://www.brainkart.com/media/extra3/idIqMXk.jpg, t ∈ R.

Therefore, http://www.brainkart.com/media/extra3/N41G6fN.jpg = (ˆi + 2 ˆ j - 3 ˆk ) + t(4 ˆi + 5 ˆ j - 7 ˆ k ), t∈ R..

(ii)  vector equation of the required straight line in non-parametric form is http://www.brainkart.com/media/extra3/N41G6fN.jpg - http://www.brainkart.com/media/extra3/sdKAwVV.jpg) × http://www.brainkart.com/media/extra3/idIqMXk.jpg = http://www.brainkart.com/media/extra3/ILwwcz5.jpg.

Therefore, http://www.brainkart.com/media/extra3/N41G6fN.jpg - (ˆi + 2 ˆj - 3 ˆ)) × (4 ˆi + 5 ˆj - 7 ˆk ) = http://www.brainkart.com/media/extra3/ILwwcz5.jpg.

(iii) Cartesian equations of the required line are (x - x1) / b1 = y - y1 / b1 = (z - z1) / b1.

Here, (x1 , y1 , z1) = (1, 2, -3) and direction ratios of the required line are proportional to 4, 5, -7 . Therefore, Cartesian equations of the straight line are (x -1)/4 = (y – 2)/5 = (z + 3)/-7.

 

3.     The vector equation in parametric form of a line is http://www.brainkart.com/media/extra3/N41G6fN.jpg = (3 ˆi − 2 ˆ+ 6 ˆ) + t(2 ˆi − ˆ+ 3 ˆ) . Find (i) the direction cosines of the straight line (ii) vector equation in non-parametric form of the line (iii)Cartesian equations of the line.

Solution

Comparing the given equation with equation of a straight line http://www.brainkart.com/media/extra3/N41G6fN.jpg http://www.brainkart.com/media/extra3/sdKAwVV.jpg thttp://www.brainkart.com/media/extra3/idIqMXk.jpg , we have http://www.brainkart.com/media/extra3/sdKAwVV.jpg= 3 ˆi − 2 ˆ+ 6 ˆand http://www.brainkart.com/media/extra3/idIqMXk.jpg = 2iˆ − ˆ+ 3kˆ . Therefore,

(i)   If http://www.brainkart.com/media/extra3/idIqMXk.jpg = b1iˆ + b2ˆj + b3kˆ ,  then  direction  ratios  of  the  straight  line  are b1 , b2 , b3. Therefore, direction ratios of the given straight line are proportional to 2, -1, 3 , and hence the direction cosines of the given straight line are http://www.brainkart.com/media/extra3/GItIts0.jpg.

(ii) vector equation of the straight line in non-parametric form is given by  ( http://www.brainkart.com/media/extra3/N41G6fN.jpg -  http://www.brainkart.com/media/extra3/sdKAwVV.jpg) × http://www.brainkart.com/media/extra3/idIqMXk.jpg = http://www.brainkart.com/media/extra3/ILwwcz5.jpg . Therefore, http://www.brainkart.com/media/extra3/N41G6fN.jpg - (3 ˆi - 2 ˆj + 6 ˆk )) x(2 ˆi - ˆj + 3 ˆk ) = 0 .

(iii) Here (x1 , y1 , z1 ) = (3, -2, 6) and the direction ratios are proportional to 2, -1, 3 .

Therefore, Cartesian equations of the straight line are (x – 3)/2 = (y + 2)/-1 = (z – 6)/3

 

4.     Find the vector equation in parametric form and Cartesian equations of the line passing through (−4, 2, −3) and is parallel to the line http://www.brainkart.com/media/extra3/tK5Zn7O.jpg

Solution

Rewriting the given equations as http://www.brainkart.com/media/extra3/ujWebGP.jpg and comparing with http://www.brainkart.com/media/extra3/6RreLF9.jpg

We have http://www.brainkart.com/media/extra3/v8tt4n0.jpg

Clearly, http://www.brainkart.com/media/extra3/idIqMXk.jpg is parallel to the vector 8iˆ + 4ˆj - 3kˆ . Therefore, a vector equation of the required straight line passing through the given point (-4, 2, -3) and parallel to the vector 8iˆ + 4ˆj - 3kˆ in parametric form is

  http://www.brainkart.com/media/extra3/N41G6fN.jpg = (-4iˆ + 2ˆj  - 3kˆ) + t(8iˆ + 4ˆj - 3kˆ), t ∈ R.

Therefore, Cartesian equations of the required straight line are given by

(x + 4) / 8 =  (y – 2) / 4 = (z + 3) / -3 .

 

5.     Find the vector equation in parametric form and Cartesian equations of a straight passing through the points (−5, 7, −4) and (13, −5, 2) . Find the point where the straight line crosses the xy -plane.

Solution

The straight line passes through the points (−5, 7, −4) and (13, −5, 2) , and therefore, direction ratios of the straight line joining these two points are 18, −12, 6 . That is 3, −2,1.

So, the straight line is parallel to 3iˆ − 2 ˆkˆ . Therefore,

Required vector equation of the straight line in parametric form is http://www.brainkart.com/media/extra3/N41G6fN.jpg = (−5ˆ+ 7 ˆ− 4ˆ)t(3ˆ− 2ˆˆ) or http://www.brainkart.com/media/extra3/N41G6fN.jpg = (13ˆ− 5ˆ+ 2ˆ) + s(3ˆ− 2ˆˆ) where s∈ R.

Required cartesian equations of the straight line are http://www.brainkart.com/media/extra3/wk6wI0W.jpg

An arbitrary point on the straight line is of the form

Since the straight line crosses the xy -plane, the z -coordinate of the point of intersection is zero.  Therefore, we have t − = 4 0 , that is, t = 4, and hence the straight line crosses the xy -plane at (7,−1,0).

 

6.     Find the angles between the straight line http://www.brainkart.com/media/extra3/7C0P0xi.jpg with coordinate axes.

Solution

If bˆ is a unit vector parallel to the given line, then bˆ = http://www.brainkart.com/media/extra3/j8pax0w.jpg Therefore, from the definition of direction cosines of bˆ , we have

http://www.brainkart.com/media/extra3/OuNz7lL.jpg

where α , β ,γ are the angles made by bˆ with the positive x -axis, positive y -axis, and positive z -axis, respectively. As the angle between the given straight line with the coordinate axes are same as the angles made by bˆ with the coordinate axes, we have α = cos-1 (2/3), β = cos-1( 2/3), γ = cos-1(-1/3), respectively.

 

4. Angle between two straight lines

(a) Vector form

The acute angle between two given straight lines

http://www.brainkart.com/media/extra3/ieXn0oB.jpg

(b) Cartesian form

If two lines are given in Cartesian form as http://www.brainkart.com/media/extra3/r6ihSgu.jpg then the acute angle θ between the two given lines is given by

http://www.brainkart.com/media/extra3/kc2fUtu.jpg

 

1.     Find the acute angle between the lines http://www.brainkart.com/media/extra3/N41G6fN.jpg = (ˆi + 2ˆ+ 4ˆ)t(2ˆ+ 2ˆ+ ˆ) and the straight line passing through the points (5,1, 4) and (9, 2,12) .

Solution

We know that the line http://www.brainkart.com/media/extra3/N41G6fN.jpg = (ˆi + 2ˆ+ 4ˆ)t(2ˆ+ 2ˆˆ) is parallel to the vector 2ˆ+ 2ˆˆk.

Direction ratios of the straight line joining the two given points (5,1, 4) and (9, 2,12) are 4,1,8 and hence this line is parallel to the vector 4iˆ + ˆ+ 8kˆ .

Therefore, the acute angle between the given two straight lines is

http://www.brainkart.com/media/extra3/amtx4aK.jpg

 

2.     Find the acute angle between the straight lines http://www.brainkart.com/media/extra3/2t6sHWB.jpg and state whether they are parallel or perpendicular.

Solution

Comparing the given lines with the general Cartesian equations of straight lines,

http://www.brainkart.com/media/extra3/dEIjmP9.jpg

we find (b1 , b2 , b3 ) = (2,1, −2) and (d1 , d2 , d3 ) = (4, −4, 2) . Therefore, the acute angle between the two straight lines is

http://www.brainkart.com/media/extra3/gCk1tCm.jpg

Thus the two straight lines are perpendicular.

 

3.     Show that the straight line passing through the points A(6, 7, 5) and B(8,10, 6) is perpendicular to the straight line passing through the points C(10, 2, −5) and D(8, 3, −4) .

Solution

The straight line passing through the points A(6, 7, 5)  and B(8,10, 6) is parallel to the vector http://www.brainkart.com/media/extra3/idIqMXk.jpg http://www.brainkart.com/media/extra3/8Rc0wfa.jpg http://www.brainkart.com/media/extra3/jwTptGB.jpg − http://www.brainkart.com/media/extra3/Qg0u1ND.jpg = 2iˆ + 3 ˆkˆ and the straight line passing through the points C(10, 2, −5) and D(8, 3, −4) is parallel to the vector http://www.brainkart.com/media/extra3/11F4Juc.jpg http://www.brainkart.com/media/extra3/bs4m4vv.jpg = −2iˆ + ˆkˆ . Therefore, the angle between the two straight lines is the angle between the two vectors http://www.brainkart.com/media/extra3/idIqMXk.jpg and http://www.brainkart.com/media/extra3/11F4Juc.jpg. Since

http://www.brainkart.com/media/extra3/RVorC8d.jpg

the two vectors are perpendicular, and hence the two straight lines are perpendicular.

A point on the straight line and the direction of the straight line  are given

(A) Parametric form of vector equation

1.  The vector equation of a straight line passing through a fixed point with position vector http://www.brainkart.com/media/extra3/sdKAwVV.jpg and parallel to a given vector http://www.brainkart.com/media/extra3/idIqMXk.jpg is http://www.brainkart.com/media/extra3/N41G6fN.jpg = http://www.brainkart.com/media/extra3/idIqMXk.jpg + thttp://www.brainkart.com/media/extra3/idIqMXk.jpg, where t R.

Proof

If http://www.brainkart.com/media/extra3/sdKAwVV.jpg is the position vector of a given point and http://www.brainkart.com/media/extra3/N41G6fN.jpg is the position vector of an arbitrary point  P on the straight line, then

http://www.brainkart.com/media/extra3/MNA64Dk.jpghttp://www.brainkart.com/media/extra3/N41G6fN.jpg http://www.brainkart.com/media/extra3/sdKAwVV.jpg.

http://www.brainkart.com/media/extra3/0n2kli3.jpg

This is the vector equation of the straight line in parametric form.

 (b) Non-parametric form of vector equation

Since http://www.brainkart.com/media/extra3/MNA64Dk.jpg is parallel to http://www.brainkart.com/media/extra3/idIqMXk.jpg , we have  http://www.brainkart.com/media/extra3/MNA64Dk.jpg × http://www.brainkart.com/media/extra3/idIqMXk.jpg http://www.brainkart.com/media/extra3/ILwwcz5.jpg

That is, (http://www.brainkart.com/media/extra3/N41G6fN.jpg − http://www.brainkart.com/media/extra3/sdKAwVV.jpg) × http://www.brainkart.com/media/extra3/idIqMXk.jpg = 0 .

This is known as the vector equation of the straight line in non-parametric form.

(c) Cartesian equation

Suppose is (xyz) , is (x1 , y1 , z1 ) and http://www.brainkart.com/media/extra3/idIqMXk.jpg b1 ˆi b2 ˆb3 ˆ. Then, substituting http://www.brainkart.com/media/extra3/N41G6fN.jpg x ˆi y ˆz ˆ, http://www.brainkart.com/media/extra3/sdKAwVV.jpg xy j z1 ˆk  in (1) and comparing the coefficients of ˆi , ˆj, ˆ, we get

x − x1 = tb1 , − y1 = tb2 , − z1 = tb3                     ………….(4)

Conventionally (4) can be written as

http://www.brainkart.com/media/extra3/Jgto1ZU.jpg

which are called the Cartesian equations or symmetric equations of a straight line passing through the point (x1, y1 , z1) and parallel to a vector with direction ratios b1, b2, b3.

Straight Line passing through two given points

(a) Parametric form of vector equation

The parametric form of vector equation of a line passing through two given points whose position vectors are http://www.brainkart.com/media/extra3/sdKAwVV.jpg and http://www.brainkart.com/media/extra3/idIqMXk.jpg respectively is http://www.brainkart.com/media/extra3/rqTehtX.jpg∈ R.

(b) Non-parametric form of vector equation

The above equation can be written equivalently in non-parametric form of vector equation as

http://www.brainkart.com/media/extra3/rqTehtX.jpg  = http://www.brainkart.com/media/extra3/ILwwcz5.jpg

(c) Cartesian form of equation

Suppose is (xyz) ,  is (x1, y1 , z1 ) and is (x2 , y2 , z2). Then substituting http://www.brainkart.com/media/extra3/N41G6fN.jpg x ˆi y ˆ j z ˆk http://www.brainkart.com/media/extra3/sdKAwVV.jpg x1ˆi y1ˆ z1ˆk and http://www.brainkart.com/media/extra3/idIqMXk.jpg x2yˆ +z2ˆk in theorem 6.12 and comparing the coefficients of ˆi , ˆ jˆk , we get  − x1  = t(x2 − x1), − y1  = ty2 − y1), − z1  = t(z2 − z1 ) and so the Cartesian equations of a  line passing through two given points (x1, y1, z1) and (x2, y2, z2) are given by

http://www.brainkart.com/media/extra3/sxS2JoW.jpg

From the above equation, we observe that the direction ratios of a line passing through two given points (x1 , y1 , z1) and (x2 , y2 , z2 ) are given by x2− x1 , y2 − y1 , z2 − z1, which are also given by any three numbers proportional to them and in particular x1 − x2 , y1 − y2 , z1 − z2.

1.     A straight line passes through the point (1, 2, −3) and parallel to 4iˆ + 5 ˆ− 7kˆ . Find (i) vector equation in parametric form (ii) vector equation in non-parametric form (iii) Cartesian equations of the straight line.

Solution

The required line passes through (1, 2, −3) . So, the position vector of the point is iˆ + 2 ˆ− 3kˆ.

Let http://www.brainkart.com/media/extra3/sdKAwVV.jpg ˆi + 2 ˆ− 3ˆand http://www.brainkart.com/media/extra3/idIqMXk.jpg = 4ˆ+ 5 ˆ− 7ˆ. Then, we have

Let a = i + 2 j - 3k and b = 4i + 5 j - 7k . Then, we have

(i) vector equation of the required straight line in parametric form is http://www.brainkart.com/media/extra3/N41G6fN.jpg = http://www.brainkart.com/media/extra3/sdKAwVV.jpg + thttp://www.brainkart.com/media/extra3/idIqMXk.jpg, t ∈ R.

Therefore, http://www.brainkart.com/media/extra3/N41G6fN.jpg = (ˆi + 2 ˆ j - 3 ˆk ) + t(4 ˆi + 5 ˆ j - 7 ˆ k ), t∈ R..

(ii)  vector equation of the required straight line in non-parametric form is http://www.brainkart.com/media/extra3/N41G6fN.jpg - http://www.brainkart.com/media/extra3/sdKAwVV.jpg) × http://www.brainkart.com/media/extra3/idIqMXk.jpg = http://www.brainkart.com/media/extra3/ILwwcz5.jpg.

Therefore, http://www.brainkart.com/media/extra3/N41G6fN.jpg - (ˆi + 2 ˆj - 3 ˆ)) × (4 ˆi + 5 ˆj - 7 ˆk ) = http://www.brainkart.com/media/extra3/ILwwcz5.jpg.

(iii) Cartesian equations of the required line are (x - x1) / b1 = y - y1 / b1 = (z - z1) / b1.

Here, (x1 , y1 , z1) = (1, 2, -3) and direction ratios of the required line are proportional to 4, 5, -7 . Therefore, Cartesian equations of the straight line are (x -1)/4 = (y – 2)/5 = (z + 3)/-7.

 

2.     The vector equation in parametric form of a line is http://www.brainkart.com/media/extra3/N41G6fN.jpg = (3 ˆi − 2 ˆ+ 6 ˆ) + t(2 ˆi − ˆ+ 3 ˆ) . Find (i) the direction cosines of the straight line (ii) vector equation in non-parametric form of the line (iii)Cartesian equations of the line.

Solution

Comparing the given equation with equation of a straight line http://www.brainkart.com/media/extra3/N41G6fN.jpg http://www.brainkart.com/media/extra3/sdKAwVV.jpg thttp://www.brainkart.com/media/extra3/idIqMXk.jpg , we have http://www.brainkart.com/media/extra3/sdKAwVV.jpg= 3 ˆi − 2 ˆ+ 6 ˆand http://www.brainkart.com/media/extra3/idIqMXk.jpg = 2iˆ − ˆ+ 3kˆ . Therefore,

(i)   If http://www.brainkart.com/media/extra3/idIqMXk.jpg = b1iˆ + b2ˆj + b3kˆ ,  then  direction  ratios  of  the  straight  line  are b1 , b2 , b3. Therefore, direction ratios of the given straight line are proportional to 2, -1, 3 , and hence the direction cosines of the given straight line are http://www.brainkart.com/media/extra3/GItIts0.jpg.

(ii) vector equation of the straight line in non-parametric form is given by  ( http://www.brainkart.com/media/extra3/N41G6fN.jpg -  http://www.brainkart.com/media/extra3/sdKAwVV.jpg) × http://www.brainkart.com/media/extra3/idIqMXk.jpg = http://www.brainkart.com/media/extra3/ILwwcz5.jpg . Therefore, http://www.brainkart.com/media/extra3/N41G6fN.jpg - (3 ˆi - 2 ˆj + 6 ˆk )) x(2 ˆi - ˆj + 3 ˆk) = 0 .

(iii) Here (x1 , y1 , z1 ) = (3, -2, 6) and the direction ratios are proportional to 2, -1, 3 .

Therefore, Cartesian equations of the straight line are (x – 3)/2 = (y + 2)/-1 = (z – 6)/3

3.     Find the vector equation in parametric form and Cartesian equations of the line passing through (−4, 2, −3) and is parallel to the line http://www.brainkart.com/media/extra3/tK5Zn7O.jpg

Solution

Rewriting the given equations as http://www.brainkart.com/media/extra3/ujWebGP.jpg and comparing with http://www.brainkart.com/media/extra3/6RreLF9.jpg

We have http://www.brainkart.com/media/extra3/v8tt4n0.jpg

Clearly, http://www.brainkart.com/media/extra3/idIqMXk.jpg is parallel to the vector 8iˆ + 4ˆj - 3kˆ . Therefore, a vector equation of the required straight line passing through the given point (-4, 2, -3) and parallel to the vector 8iˆ + 4ˆj - 3kˆ in parametric form is

  http://www.brainkart.com/media/extra3/N41G6fN.jpg = (-4iˆ + 2ˆj  - 3kˆ) + t(8iˆ + 4ˆj - 3kˆ), t ∈ R.

Therefore, Cartesian equations of the required straight line are given by

(x + 4) / 8 =  (y – 2) / 4 = (z + 3) / -3 .

 

4.     Find the vector equation in parametric form and Cartesian equations of a straight passing through the points (−5, 7, −4) and (13, −5, 2) . Find the point where the straight line crosses the xy -plane.

Solution

The straight line passes through the points (−5, 7, −4) and (13, −5, 2) , and therefore, direction ratios of the straight line joining these two points are 18, −12, 6 . That is 3, −2,1.

So, the straight line is parallel to 3iˆ − 2 ˆkˆ . Therefore,

Required vector equation of the straight line in parametric form is http://www.brainkart.com/media/extra3/N41G6fN.jpg = (−5ˆ+ 7 ˆ− 4ˆ)t(3ˆ− 2ˆˆ) or http://www.brainkart.com/media/extra3/N41G6fN.jpg = (13ˆ− 5ˆ+ 2ˆ) + s(3ˆ− 2ˆ+ˆ) where s∈ R.

Required cartesian equations of the straight line are http://www.brainkart.com/media/extra3/wk6wI0W.jpg

An arbitrary point on the straight line is of the form

Since the straight line crosses the xy -plane, the z -coordinate of the point of intersection is zero.  Therefore, we have t − = 4 0 , that is, t = 4, and hence the straight line crosses the xy -plane at (7,−1,0).

 

5.     Find the angles between the straight line http://www.brainkart.com/media/extra3/7C0P0xi.jpg with coordinate axes.

Solution

If bˆ is a unit vector parallel to the given line, then bˆ = http://www.brainkart.com/media/extra3/j8pax0w.jpg Therefore, from the definition of direction cosines of bˆ , we have

http://www.brainkart.com/media/extra3/OuNz7lL.jpg

where α , β ,γ are the angles made by bˆ with the positive x -axis, positive y -axis, and positive z -axis, respectively. As the angle between the given straight line with the coordinate axes are same as the angles made by bˆ with the coordinate axes, we have α = cos-1 (2/3), β = cos-1( 2/3), γ = cos-1(-1/3), respectively.

Angle between two straight lines

(a) Vector form

The acute angle between two given straight lines

http://www.brainkart.com/media/extra3/ieXn0oB.jpg

(b) Cartesian form

If two lines are given in Cartesian form as http://www.brainkart.com/media/extra3/r6ihSgu.jpg then the acute angle θ between the two given lines is given by

http://www.brainkart.com/media/extra3/kc2fUtu.jpg

 

1.      

Find the acute angle between the lines http://www.brainkart.com/media/extra3/N41G6fN.jpg = (ˆi + 2ˆ+ 4ˆ)t(2ˆ+ 2ˆ+ ˆ) and the straight line passing through the points (5,1, 4) and (9, 2,12) .

Solution

We know that the line http://www.brainkart.com/media/extra3/N41G6fN.jpg = (ˆi + 2ˆ+ 4ˆ)t(2ˆ+ 2ˆˆ) is parallel to the vector 2ˆ+ 2ˆˆk.

Direction ratios of the straight line joining the two given points (5,1, 4) and (9, 2,12) are 4,1,8 and hence this line is parallel to the vector 4iˆ + ˆ+ 8kˆ .

Therefore, the acute angle between the given two straight lines is

http://www.brainkart.com/media/extra3/amtx4aK.jpg

 

2.     Find the acute angle between the straight lines http://www.brainkart.com/media/extra3/2t6sHWB.jpg and state whether they are parallel or perpendicular.

Solution

Comparing the given lines with the general Cartesian equations of straight lines,

http://www.brainkart.com/media/extra3/dEIjmP9.jpg

we find (b1 , b2 , b3 ) = (2,1, −2) and (d1 , d2 , d3 ) = (4, −4, 2) . Therefore, the acute angle between the two straight lines is

http://www.brainkart.com/media/extra3/gCk1tCm.jpg

Thus the two straight lines are perpendicular.

 

3.     Show that the straight line passing through the points A(6, 7, 5) and B(8,10, 6) is perpendicular to the straight line passing through the points C(10, 2, −5) and D(8, 3, −4) .

Solution

The straight line passing through the points A(6, 7, 5)  and B(8,10, 6) is parallel to the vector http://www.brainkart.com/media/extra3/idIqMXk.jpg http://www.brainkart.com/media/extra3/8Rc0wfa.jpg http://www.brainkart.com/media/extra3/jwTptGB.jpg − http://www.brainkart.com/media/extra3/Qg0u1ND.jpg = 2iˆ + 3 ˆkˆ and the straight line passing through the points C(10, 2, −5) and D(8, 3, −4) is parallel to the vector http://www.brainkart.com/media/extra3/11F4Juc.jpg http://www.brainkart.com/media/extra3/bs4m4vv.jpg = −2iˆ + ˆkˆ . Therefore, the angle between the two straight lines is the angle between the two vectors http://www.brainkart.com/media/extra3/idIqMXk.jpg and http://www.brainkart.com/media/extra3/11F4Juc.jpg. Since

http://www.brainkart.com/media/extra3/RVorC8d.jpg

the two vectors are perpendicular, and hence the two straight lines are perpendicular.

 

4.     Show that the lines http://www.brainkart.com/media/extra3/1ayaEa9.jpg and  http://www.brainkart.com/media/extra3/WnAHwql.jpg are parallel

Solution

We observe that the straight line http://www.brainkart.com/media/extra3/1ayaEa9.jpg is parallel to the vector 4iˆ - 6 ˆj +12kˆ and the straight line http://www.brainkart.com/media/extra3/WnAHwql.jpg is parallel to the vector -2iˆ + 3ˆj - 6kˆ.

Since 4iˆ - 6ˆj +12kˆ = -2(-2iˆ + 3ˆj - 6kˆ) , the two vectors are parallel, and hence the two straight lines are parallel.

 

Point of intersection of two straight lines

If http://www.brainkart.com/media/extra3/LDVRZpP.jpg are two lines, then every point on the line is of the form (x1 + sa1 , y1 + sa2 , z1 + sa3 ) and (x2 + tb1 , y2 + tb2 , z2 + tb3 ) respectively. If the lines are intersecting, then there must be a common point. So, at the point of intersection, for some values of and , we have

http://www.brainkart.com/media/extra3/r06bNVy.jpg

By solving any two of the above three equations, we obtain the values of and . If and t satisfy the remaining equation, the lines are intersecting lines. Otherwise the lines are non-intersecting . Substituting the value of , (or by substituting the value of ), we get the point of intersection of two lines.

If the equations of straight lines are given in vector form, write them in cartesian form and proceed as above to find the point of intersection.

 

1.     Find the point of intersection of the lines http://www.brainkart.com/media/extra3/88PIwjc.jpg

Solution

Every point on the line http://www.brainkart.com/media/extra3/AXpvVWh.jpg (say) is of the form (2s +1, 3s + 2, 4s + 3) and every point on the line http://www.brainkart.com/media/extra3/nOofUbz.jpg(say) is of the form (5t + 4, 2t +1, t) . So, at the point of intersection, for some values of s and t , we have

(2s +1, 3s + 2, 4s + 3) = (5t + 4, 2t +1, t)

Therefore, 2− 5= 3, 3− 2= −1 and 4− = −3 . Solving the first two equations we get = −1, = −1 . These values of and t satisfy the third equation. Therefore, the given lines intersect. Substituting, these values of or in the respective points, the point of intersection is (−1, −1, −1) .

 

Shortest distance between two straight lines

We have just explained how the point of intersection of two lines are found and we have also studied how to determine whether the given two lines are parallel or not.

 

 

 

1.     Find the parametric form of vector equation of a straight line passing through the point of intersection of the straight lines http://www.brainkart.com/media/extra3/hdCKoPj.jpg and perpendicular to both straight lines.

Solution

The Cartesian equations of the straight line http://www.brainkart.com/media/extra3/N41G6fN.jpg = (iˆ + 3 ˆ− )t(2iˆ + 3 ˆ+ 2) is

http://www.brainkart.com/media/extra3/QnYTAuw.jpg

Then any point on this line is of the form (2s +1, 3s + 3, 2s -1)          ... (1)

The Cartesian equation of the second line is (x – 2)/1 = (y – 4)/2 = (z + 3)/4 = t  (say)

Then any point on this line is of the form (t + 2, 2t + 4, 4t - 3)

If the given lines intersect, then there must be a common point. Therefore, for some s∈ R, we have (2+1, 3+ 3, 2−1) = (+ 2, 2+ 4, 4− 3) .

Equating the coordinates of xand we get

2− = 1, 3− 2= 1 and − 2= −1.

Solving the first two of the above three equations, we get = 1 and = 1. These values of and t satisfy the third equation. So, the lines are intersecting.

Now, using the value of in (1) or the value of in (2), the point of intersection (3, 6,1) of these two straight lines is obtained.

If we take http://www.brainkart.com/media/extra3/idIqMXk.jpg= 2iˆ + 3ˆj + 2kˆ  and http://www.brainkart.com/media/extra3/11F4Juc.jpg = iˆ + 2ˆj + 4kˆ  then http://www.brainkart.com/media/extra3/7EgmLG0.jpg is a vector perpendicular to both the given straight lines. Therefore, the required straight line passing through (3, 6,1) and perpendicular to both the given straight lines is the same as the straight line passing through (3, 6,1) and parallel to 8iˆ − 6 ˆkˆ . Thus, the equation of the required straight line is

http://www.brainkart.com/media/extra3/MZVN9Oy.jpg

2.      Determine whether the pair of straight lines http://www.brainkart.com/media/extra3/N41G6fN.jpg = (2ˆ+ 6ˆ+ 3ˆ)t(2ˆ+ 3ˆ+ 4ˆ) , http://www.brainkart.com/media/extra3/N41G6fN.jpg = (2ˆ− 3ˆ) + si + 2ˆ+ 3ˆ) are parallel. Find the shortest distance between them.

Solution

Comparing the given two equations with

http://www.brainkart.com/media/extra3/N41G6fN.jpg = http://www.brainkart.com/media/extra3/sdKAwVV.jpg + shttp://www.brainkart.com/media/extra3/idIqMXk.jpg and http://www.brainkart.com/media/extra3/N41G6fN.jpg = http://www.brainkart.com/media/extra3/wOHZrke.jpg + thttp://www.brainkart.com/media/extra3/11F4Juc.jpg 

we have http://www.brainkart.com/media/extra3/sdKAwVV.jpg = 2ˆ+ 6ˆ+ 3ˆkhttp://www.brainkart.com/media/extra3/idIqMXk.jpg = 2ˆ+ 3ˆ+ 4ˆkhttp://www.brainkart.com/media/extra3/wOHZrke.jpg = 2ˆ− 3ˆkhttp://www.brainkart.com/media/extra3/11F4Juc.jpg ˆi + 2ˆ+ 3ˆk

Clearly, http://www.brainkart.com/media/extra3/idIqMXk.jpg is not a scalar multiple of http://www.brainkart.com/media/extra3/11F4Juc.jpg . So, the two vectors are not parallel and hence the two lines are not parallel.

The shortest distance between the two straight lines is given by

http://www.brainkart.com/media/extra3/Zs8L2xe.jpg

Therefore, the distance between the two given straight lines is zero.Thus, the given lines intersect each other.

 

3.     Find the shortest distance between the two given straight lines http://www.brainkart.com/media/extra3/N41G6fN.jpg = (2ˆ+ 3ˆ+ 4ˆ) + t(−2ˆ+ ˆ− 2ˆ) and http://www.brainkart.com/media/extra3/nCtrL2u.jpg

Solution

The parametric form of vector equations of the given straight lines are

http://www.brainkart.com/media/extra3/SRyL9PV.jpg

Clearly, http://www.brainkart.com/media/extra3/idIqMXk.jpg is a scalar multiple of http://www.brainkart.com/media/extra3/11F4Juc.jpg, and hence the two straight lines are parallel. We know that the shortest distance between two parallel straight lines is given by d =

http://www.brainkart.com/media/extra3/RCxziyd.jpg

 

4.     Find the coordinates of the foot of the perpendicular drawn from the point (−1, 2, 3) to the straight line http://www.brainkart.com/media/extra3/N41G6fN.jpg = (ˆi − 4ˆ+ 3ˆ)t(2ˆ+ 3ˆ+ ˆ) . Also, find the shortest distance from the given point to the straight line.

Solution

Comparing the given equation http://www.brainkart.com/media/extra3/N41G6fN.jpg = (ˆi - 4ˆj + 3ˆk ) + t(2ˆi + 3ˆj + ˆk ) with http://www.brainkart.com/media/extra3/N41G6fN.jpg = http://www.brainkart.com/media/extra3/sdKAwVV.jpg + thttp://www.brainkart.com/media/extra3/idIqMXk.jpg , we get a = ˆi - 4ˆj + 3ˆk , and http://www.brainkart.com/media/extra3/idIqMXk.jpg = 2ˆi + 3ˆj + ˆk . We denote the given point (-1, 2, 3) by D , and the point (1, -4, 3) on the straight line by A . If F is the foot of the perpendicular from D to the straight line, then F is of the form (2t +1, 3t - 4, t + 3) and http://www.brainkart.com/media/extra3/XhcM4aK.jpg = (2t + 2)iˆ + (3t - 6) ˆj + tkˆ.

http://www.brainkart.com/media/extra3/gyeexuB.jpg

Since http://www.brainkart.com/media/extra3/idIqMXk.jpg is perpendicular to http://www.brainkart.com/media/extra3/aGAjEbm.jpg , we have

http://www.brainkart.com/media/extra3/idIqMXk.jpg . http://www.brainkart.com/media/extra3/aGAjEbm.jpg= 0 ⇒ 2(2t + 2) + 3(3t - 6) +1(t) = 0

 t = 1

Therefore, the coordinate of F is  (3,-1, 4)

Now, the perpendicular distance from the given point to the given line is

DF = | http://www.brainkart.com/media/extra3/aGAjEbm.jpg |= √[42+(-3)2+12] =  √26 units.

Equation of a plane when a normal to the plane and the distance of the plane from the origin are given

(a) Vector equation of a plane in normal form

Theorem 1 :

The equation of the plane at a distance from the origin and perpendicular to the unit normal vector dˆ is http://www.brainkart.com/media/extra3/N41G6fN.jpg dˆ = .

Proof

Consider a plane whose perpendicular distance from the origin is 

Let be the foot of the perpendicular from to the plane. 

Let dˆ be the unit normal vector in the direction of http://www.brainkart.com/media/extra3/Qg0u1ND.jpg.

http://www.brainkart.com/media/extra3/s2dAGMq.jpg

Then http://www.brainkart.com/media/extra3/Qg0u1ND.jpg = pdˆ .

If http://www.brainkart.com/media/extra3/N41G6fN.jpg is the position vector of an arbitrary point on the plane,

then http://www.brainkart.com/media/extra3/MNA64Dk.jpg is perpendicular to http://www.brainkart.com/media/extra3/Qg0u1ND.jpg.

http://www.brainkart.com/media/extra3/PbFTdcN.jpg

The above equation is called the vector equation of the plane in normal form.

(b) Cartesian equation of a plane in normal form

Let lmbe the direction cosines of dˆ. Then we have dˆ = liˆ + mˆj nkˆ.

Thus, equation (1) becomes

http://www.brainkart.com/media/extra3/N41G6fN.jpg . (liˆ + mˆj nkˆ) = p

If is (x,y,z), then http://www.brainkart.com/media/extra3/N41G6fN.jpg = xˆi yˆj zˆk

Therefore, (xiˆ + yˆj zkˆ)  (liˆ + mˆj nkˆ) = or lx my nz p                     ............(2)

Equation (2) is called the Cartesian equation of the plane in normal form.

Equation of a plane perpendicular to a vector and passing through a given point



(a) Vector form of equation

Consider a plane passing through a point with position vector http://www.brainkart.com/media/extra3/sdKAwVV.jpg and http://www.brainkart.com/media/extra3/QhHbwbf.jpg is a normal vector to the given plane.

Let http://www.brainkart.com/media/extra3/N41G6fN.jpg be the position vector of an arbitrary point on the plane.

Then http://www.brainkart.com/media/extra3/MNA64Dk.jpg is perpendicular to http://www.brainkart.com/media/extra3/QhHbwbf.jpg.

http://www.brainkart.com/media/extra3/dY3ymqZ.jpg

which is the vector form of the equation of a plane passing through a point with position vector http://www.brainkart.com/media/extra3/sdKAwVV.jpg and perpendicular to http://www.brainkart.com/media/extra3/QhHbwbf.jpg.

 



(b) Cartesian form of equation

If abare the direction ratios of http://www.brainkart.com/media/extra3/QhHbwbf.jpg, then we have http://www.brainkart.com/media/extra3/QhHbwbf.jpg = aiˆ + bˆj ckˆ.

Suppose, is (x1 , y1 , z1) then equation (1) becomes ((− x1 )iˆ + ( − y1 ) ˆ+ (− z1 )kˆ)  (aiˆ + bˆj ckˆ) = 0 . That is,

a(− x1) + b− y1) + c(− z1) = 0

which is the Cartesian equation of a plane, normal to a vector with direction ratios aband passing through a given point (x1 , y1 , z1) .

Intercept form of the equation of a plane

Let the plane http://www.brainkart.com/media/extra3/N41G6fN.jpg  http://www.brainkart.com/media/extra3/QhHbwbf.jpg meets the coordinate axes at A,B,C respectively such that the intercepts on the axes are OA aOB bOC . Now position vector of the point  A is aiˆ. Since lies on the given plane, we have  aiˆ⋅ http://www.brainkart.com/media/extra3/QhHbwbf.jpg = q  which gives http://www.brainkart.com/media/extra3/hnbq5La.jpg.

http://www.brainkart.com/media/extra3/dNLVYQe.jpg

Similarly, since the vectors bˆj and cˆk lie on the given plane,  we  have http://www.brainkart.com/media/extra3/NuCba2D.jpg.  Substituting  http://www.brainkart.com/media/extra3/N41G6fN.jpg = xˆi + yˆj + zˆk in http://www.brainkart.com/media/extra3/N41G6fN.jpg  http://www.brainkart.com/media/extra3/QhHbwbf.jpg = q , we get 

http://www.brainkart.com/media/extra3/0FZOgBJ.jpg

Dividing by q, we gethttp://www.brainkart.com/media/extra3/F72QXEy.jpg. This is called the intercept form of equation of the plane having intercepts a, b, c on the x, y, z axes respectively.

 

1.     The general equation ax by cz = 0 of first degree in xyrepresents a plane.

Proof

The equation ax by cz = 0 can be written in the vector form as follows

http://www.brainkart.com/media/extra3/ZXkqlvh.jpg

Since this is the vector form of the equation of a plane in standard form, the given equation ax by cz = 0 represents a plane. Here http://www.brainkart.com/media/extra3/QhHbwbf.jpg = aiˆ + bˆj ckˆis a vector normal to the plane.

 

2.     Find the vector and Cartesian form of the equations of a plane which is at a distance of 12 units from the origin and perpendicular to 6iˆ + 2 ˆ− 3kˆ .

Solution

Let http://www.brainkart.com/media/extra3/11F4Juc.jpg = 6iˆ + 2 ˆ− 3kˆ and  P =12.

If dˆ is the unit normal vector in the direction of the vector 6iˆ + 2ˆ− 3kˆ , then

http://www.brainkart.com/media/extra3/48v02k1.jpg

If http://www.brainkart.com/media/extra3/N41G6fN.jpg is the position vector of an arbitrary point (x, y, z) on the plane, then using http://www.brainkart.com/media/extra3/N41G6fN.jpg . http://www.brainkart.com/media/extra3/11F4Juc.jpg = p , the vector equation of the plane in normal form is 

http://www.brainkart.com/media/extra3/c6kXXrD.jpg

Substituting http://www.brainkart.com/media/extra3/N41G6fN.jpgxˆi + yˆj + zˆk in the above equation, we get (xˆi + yˆj + zˆk ) . 1/7 (6ˆi + 2ˆ j - 3ˆk ) = 12 .

Applying dot product in the above equation and simplifying, we get 6+ 2 − 3= 84, which is the the standard form.

 

3.     If the Cartesian equation of a plane is 3- 4 + 3= -8 , find the vector equation of the plane in the standard form.

Solution

If http://www.brainkart.com/media/extra3/N41G6fN.jpg xi yj zk is the position vector of an arbitrary point (xyz) on the plane, then the given equation can be written as (xiˆ + yˆj zkˆ)  (3iˆ − 4 ˆ+ 3kˆ) = −8 or (xiˆ + yˆj zkˆ)  (−3iˆ + 4 ˆ− 3kˆ) = 8 . That is, http://www.brainkart.com/media/extra3/N41G6fN.jpg  (−3ˆ+ 4ˆ− 3ˆ) = 8 which is the vector equation of the given plane in standard form.

 

4.     Find the direction cosines of the normal to the plane and length of the perpendicular from the origin to the plane http://www.brainkart.com/media/extra3/N41G6fN.jpg  (3ˆ− 4ˆ +12ˆ) = 5.

Solution

Let http://www.brainkart.com/media/extra3/11F4Juc.jpg = 3iˆ − 4 ˆ+12kˆ and = 5 .

If dˆ is the unit vector in the direction of the vector 3iˆ − 4 ˆ+12kˆ , then dˆ = 1/13 (3iˆ − 4 ˆ+12kˆ) 

Now, dividing the given equation by 13 , we get

http://www.brainkart.com/media/extra3/JIZuX4q.jpg

which is the equation of the plane in the normal form http://www.brainkart.com/media/extra3/N41G6fN.jpg.ˆd  = p

From this equation, we infer that http://www.brainkart.com/media/extra3/NBWfdJc.jpg is a unit vector normal to the plane from the origin. Therefore, the direction cosines of dˆ  are http://www.brainkart.com/media/extra3/QRmugw8.jpg and the length of the perpendicular from the origin to the plane is 5/13.

 

5.     Find the vector and Cartesian equations of the plane passing through the point with position vector 4iˆ + 2 ˆ− 3kˆ and normal to vector 2iˆ − ˆkˆ .

Solution

If the position vector of the given point is http://www.brainkart.com/media/extra3/sdKAwVV.jpg = 4+ 2 − 3and http://www.brainkart.com/media/extra3/QhHbwbf.jpg = 2− , then the equation of the plane passing through a point and normal to a vector is given by (http://www.brainkart.com/media/extra3/N41G6fN.jpg − http://www.brainkart.com/media/extra3/sdKAwVV.jpg http://www.brainkart.com/media/extra3/QhHbwbf.jpg = 0 or  http://www.brainkart.com/media/extra3/N41G6fN.jpg  http://www.brainkart.com/media/extra3/QhHbwbf.jpghttp://www.brainkart.com/media/extra3/sdKAwVV.jpg  http://www.brainkart.com/media/extra3/QhHbwbf.jpg.

Substituting  http://www.brainkart.com/media/extra3/sdKAwVV.jpg = 4+ 2 − 3and http://www.brainkart.com/media/extra3/QhHbwbf.jpg = 2− k  in the above equation, we get 

http://www.brainkart.com/media/extra3/N41G6fN.jpg =  (4+ 2 − 3). (2− )

Thus, the required vector equation of the plane is http://www.brainkart.com/media/extra3/N41G6fN.jpg (2ˆ− ˆˆ) = 3 . If http://www.brainkart.com/media/extra3/N41G6fN.jpg xˆi yˆj zˆk then we get the Cartesian equation of the plane 2− = 3 .

 

6.     A variable plane moves in such a way that the sum of the reciprocals of its intercepts on the coordinate axes is a constant. Show that the plane passes through a fixed point

Solution

The equation of the plane having intercepts abon the xyaxes respectively is http://www.brainkart.com/media/extra3/5wWfbFI.jpg.

Since the sum of the reciprocals of the intercepts on the coordinate axes is a constant, we have http://www.brainkart.com/media/extra3/OppzRBb.jpg where is a constant, and which can be written as http://www.brainkart.com/media/extra3/BZvmtB5.jpg

This shows that the plane http://www.brainkart.com/media/extra3/gNXS5KH.jpg passes through the fixed point http://www.brainkart.com/media/extra3/9TR9wDu.jpg

 

 Equation of a plane passing through three given non-collinear points



(a) Parametric form of vector equation

1. If three non-collinear points with position vectors http://www.brainkart.com/media/extra3/sdKAwVV.jpghttp://www.brainkart.com/media/extra3/idIqMXk.jpghttp://www.brainkart.com/media/extra3/wOHZrke.jpg are given, then the vector equation of the plane passing through the given points in parametric form is

http://www.brainkart.com/media/extra3/evr9i2y.jpg

Proof

Consider a plane passing through three non-collinear points ABwith position vectors http://www.brainkart.com/media/extra3/sdKAwVV.jpghttp://www.brainkart.com/media/extra3/idIqMXk.jpghttp://www.brainkart.com/media/extra3/wOHZrke.jpg respectively. Then atleast two of them are non-zero vectors. Let us take http://www.brainkart.com/media/extra3/idIqMXk.jpg ≠ 0  and http://www.brainkart.com/media/extra3/wOHZrke.jpg ≠ 0 . Let http://www.brainkart.com/media/extra3/N41G6fN.jpg be the position vector of an arbitrary point on the plane. Take a point D on AB (produced) such that http://www.brainkart.com/media/extra3/7SleFLd.jpg is parallel to http://www.brainkart.com/media/extra3/8Rc0wfa.jpg and http://www.brainkart.com/media/extra3/pQWVrYS.jpg is parallel to http://www.brainkart.com/media/extra3/RDYmO3r.jpg. Therefore,

http://www.brainkart.com/media/extra3/cn1dYMJ.jpg

This is the parametric form of vector equation of the plane passing through the given three non-collinear points.



(b) Non-parametric form of vector equation

Let AB, and be the three non collinear points on the plane with  position vectors http://www.brainkart.com/media/extra3/sdKAwVV.jpghttp://www.brainkart.com/media/extra3/idIqMXk.jpghttp://www.brainkart.com/media/extra3/wOHZrke.jpg respectively. Then atleast two of them are  non-zero vectors. Let us take   http://www.brainkart.com/media/extra3/idIqMXk.jpg ≠ 0  and http://www.brainkart.com/media/extra3/wOHZrke.jpg ≠ 0 .

Now http://www.brainkart.com/media/extra3/8Rc0wfa.jpg =http://www.brainkart.com/media/extra3/idIqMXk.jpg - http://www.brainkart.com/media/extra3/sdKAwVV.jpg and http://www.brainkart.com/media/extra3/RDYmO3r.jpg =http://www.brainkart.com/media/extra3/wOHZrke.jpg - http://www.brainkart.com/media/extra3/sdKAwVV.jpg. The vectors http://www.brainkart.com/media/extra3/idIqMXk.jpg - http://www.brainkart.com/media/extra3/sdKAwVV.jpg and http://www.brainkart.com/media/extra3/wOHZrke.jpg - http://www.brainkart.com/media/extra3/sdKAwVV.jpg lie on the plane. Since http://www.brainkart.com/media/extra3/sdKAwVV.jpghttp://www.brainkart.com/media/extra3/idIqMXk.jpghttp://www.brainkart.com/media/extra3/wOHZrke.jpg are non-collinear, http://www.brainkart.com/media/extra3/8Rc0wfa.jpg is not parallel to http://www.brainkart.com/media/extra3/RDYmO3r.jpg. Therefore,  http://www.brainkart.com/media/extra3/m8yBcbu.jpg is perpendicular to the plane.

If http://www.brainkart.com/media/extra3/N41G6fN.jpg is the position vector of an arbitrary point P(xyz) on the plane, then the equation of the plane passing through the point A with position vector http://www.brainkart.com/media/extra3/sdKAwVV.jpg and perpendicular to the vector http://www.brainkart.com/media/extra3/m8yBcbu.jpg is given by

http://www.brainkart.com/media/extra3/sARwqgY.jpg

This is the non-parametric form of vector equation of the plane passing through three non-collinear points.



(c) Cartesian form of equation

If (x1 , y1 , z1 ), (x2 , y2 , z2 ) and (x3 , y3 , z3 ) are the coordinates of three non-collinear points ABwith position vectors http://www.brainkart.com/media/extra3/sdKAwVV.jpghttp://www.brainkart.com/media/extra3/idIqMXk.jpghttp://www.brainkart.com/media/extra3/wOHZrke.jpg respectively and (xyz) is the coordinates of the point with position vector http://www.brainkart.com/media/extra3/N41G6fN.jpg , then we have

http://www.brainkart.com/media/extra3/RW5JnUD.jpg

Using these vectors, the non-parametric form of vector equation of the plane passing through the given three non-collinear points can be equivalently written as

http://www.brainkart.com/media/extra3/1fVU5we.jpg

which is the Cartesian equation of the plane passing through three non-collinear points.

 

Condition for a line to lie in a plane

We observe that a straight line will lie in a plane if every point on the line, lie in the plane and the normal to the plane is perpendicular to the line.

i) If the line http://www.brainkart.com/media/extra3/fc8QXQH.jpg lies in the plane http://www.brainkart.com/media/extra3/N41G6fN.jpg http://www.brainkart.com/media/extra3/QhHbwbf.jpg , then http://www.brainkart.com/media/extra3/sdKAwVV.jpg ⋅ http://www.brainkart.com/media/extra3/QhHbwbf.jpg d and http://www.brainkart.com/media/extra3/idIqMXk.jpg.http://www.brainkart.com/media/extra3/QhHbwbf.jpg = 0

ii) if the line http://www.brainkart.com/media/extra3/YDuNqJj.jpg lies in the plane Ax By Cz = 0 , then

Ax1 By1 Cz1 = 0 and aA bB cC = 0

 

1.     Verify whether the line http://www.brainkart.com/media/extra3/gbOPc66.jpg lies in the plane 5− = 8 .

Solution

Here, x1y1z1 ) = (3, 4, −3) and direction ratios of the given straight line are (a,bc) = (−4, −7,12) . Direction ratios of the normal to the given plane are AB,) = (5, −1,1) .

We observe that, the given point x1y1z1 ) = (3, 4, −3) satisfies the given plane 5− = 8

Next, aA bB cC = (−4)(5) + (−7)(−1) + (12)(1) = −1 ≠ 0 . So, the normal to the plane is not perpendicular to the line. Hence, the given line does not lie in the plane.

Condition For Co Planarity Of Two Lines



(a) Condition in vector form

The  two  given non-parallel lines http://www.brainkart.com/media/extra3/Jdm1dZ7.jpg are  coplanar. So they lie in a single plane. Let A and C be the points whose position vectors are http://www.brainkart.com/media/extra3/sdKAwVV.jpg and http://www.brainkart.com/media/extra3/wOHZrke.jpg . Then A and C lie on the plane. Since http://www.brainkart.com/media/extra3/idIqMXk.jpg and http://www.brainkart.com/media/extra3/11F4Juc.jpgare parallel to the plane, http://www.brainkart.com/media/extra3/idIqMXk.jpg × http://www.brainkart.com/media/extra3/11F4Juc.jpg is perpendicular to the plane. So http://www.brainkart.com/media/extra3/RDYmO3r.jpg is perpendicular to http://www.brainkart.com/media/extra3/idIqMXk.jpg × http://www.brainkart.com/media/extra3/11F4Juc.jpg. That is,

http://www.brainkart.com/media/extra3/QWY9GST.jpg

This is the required condition for coplanarity of two lines in vector form.

 

(b) Condition in Cartesian form

http://www.brainkart.com/media/extra3/uV8hgZ2.jpg

This is the required condition for coplanarity of two lines in Cartesian form.

 

Equation Of Plane Containing Two Non-Parallel Coplanar Lines

(a) Parametric form of vector equation

Let http://www.brainkart.com/media/extra3/4S6Zyy7.jpg be two non-parallel coplanar lines. Then http://www.brainkart.com/media/extra3/idIqMXk.jpg × http://www.brainkart.com/media/extra3/11F4Juc.jpg ≠ http://www.brainkart.com/media/extra3/ILwwcz5.jpg. Let be any point on the plane and let http://www.brainkart.com/media/extra3/N41G6fN.jpg0 be its position vector. Then, the vectors http://www.brainkart.com/media/extra3/KlD6EPk.jpg are also coplanar. So, we get  http://www.brainkart.com/media/extra3/XmtASis.jpg. Hence, the vector equation in parametric form is http://www.brainkart.com/media/extra3/u1lNP3U.jpg.

(b) Non-parametric form of vector equation

Let http://www.brainkart.com/media/extra3/4S6Zyy7.jpg be two non-parallel coplanar lines. Then http://www.brainkart.com/media/extra3/idIqMXk.jpg × http://www.brainkart.com/media/extra3/11F4Juc.jpg ≠ http://www.brainkart.com/media/extra3/ILwwcz5.jpg. Let be any point on the plane and let http://www.brainkart.com/media/extra3/N41G6fN.jpg0 be its position vector. Then, the vectors http://www.brainkart.com/media/extra3/KlD6EPk.jpg are also coplanar. So, we get http://www.brainkart.com/media/extra3/5tQ48Uh.jpg. Hence, the vector equation in non-parametric form is http://www.brainkart.com/media/extra3/o5gwDc2.jpg.

(C) Cartesian form of equation of plane

In Cartesian form the equation of the plane containing the two given coplanar lines

http://www.brainkart.com/media/extra3/WJHKG70.jpg

 

1.     Show that the lines http://www.brainkart.com/media/extra3/PTUvJFP.jpg are coplanar. Also,find the non-parametric form of vector equation of the plane containing these lines.

Solution

Comparing the two given lines with

http://www.brainkart.com/media/extra3/WK18AJX.jpg

We know that the two given lines are coplanar , 

http://www.brainkart.com/media/extra3/e5RRaal.jpg

Therefore the two given lines are coplanar.Then we find the non parametric form of vector equation of the plane containing the two given coplanar lines. We know that the plane containing the two given coplanar lines is

http://www.brainkart.com/media/extra3/Eqi6INs.jpg

which implies that  (http://www.brainkart.com/media/extra3/N41G6fN.jpg - (-iˆ - 3ˆj - 5kˆ)).(7iˆ -14ˆj + 7kˆ) = 0 . Thus, the required non-parametric vector equation of the plane containing the two given coplanar lines is http://www.brainkart.com/media/extra3/N41G6fN.jpg . (iˆ - 2ˆj + ˆk ) = 0.



Angle Between Two Planes :

The angle between two given planes is same as the angle between their normals.

 

http://www.brainkart.com/media/extra3/yx1EQBx.jpg

Proof

If θ is the acute angle between two planes http://www.brainkart.com/media/extra3/N41G6fN.jpg ⋅ http://www.brainkart.com/media/extra3/QhHbwbf.jpg 1  = p1 and http://www.brainkart.com/media/extra3/N41G6fN.jpg http://www.brainkart.com/media/extra3/QhHbwbf.jpg2  = p2  , then θ is the acute angle between their normal vectors http://www.brainkart.com/media/extra3/QhHbwbf.jpg1 and http://www.brainkart.com/media/extra3/QhHbwbf.jpg

Therefore,

http://www.brainkart.com/media/extra3/CDfchwx.jpg

 

 

1.      The acute angle θ between the planes a1b1c1d1 = 0 and a2b2c2d2 = 0 is given by 

http://www.brainkart.com/media/extra3/u6FiXNK.jpg

Proof

If http://www.brainkart.com/media/extra3/QhHbwbf.jpgand http://www.brainkart.com/media/extra3/QhHbwbf.jpgare the vectors normal to the two given planes a1x + b1y + c1z + d1 = 0 and a2x + b2y + c2z + d2 = 0 respectively. Then, http://www.brainkart.com/media/extra3/YOnjKAY.jpg

Therefore, using equation (1) in theorem 6.18 the acute angle θ between the planes is given by

http://www.brainkart.com/media/extra3/rYFUKpL.jpg

 

2.     Find the acute angle between the planes http://www.brainkart.com/media/extra3/N41G6fN.jpg.(2 ˆi + 2ˆ j + 2ˆk ) = 11 and 4x - 2 y + 2z = 15

Solution

The normal vectors of the two given planes http://www.brainkart.com/media/extra3/N41G6fN.jpg = (2 ˆi + 2ˆ j + 2ˆk ) = 11 and 4x - 2 y + 2z = 15 are http://www.brainkart.com/media/extra3/QhHbwbf.jpg1  = 2ˆi + 2ˆ j + 2ˆk and  http://www.brainkart.com/media/extra3/QhHbwbf.jpg2  = 4ˆi - 2ˆ j + 2ˆk  respectively.

If θ is the acute angle between the planes, then we have

http://www.brainkart.com/media/extra3/op2SR9O.jpg

 Angle Between A Line And A Plane

We know that the angle between a line and a plane is the  complement of the angle between the normal to the plane and the line

http://www.brainkart.com/media/extra3/fNxd5oo.jpg

Let http://www.brainkart.com/media/extra3/N41G6fN.jpg = http://www.brainkart.com/media/extra3/sdKAwVV.jpg + thttp://www.brainkart.com/media/extra3/idIqMXk.jpg be the equation of the line and http://www.brainkart.com/media/extra3/N41G6fN.jpg http://www.brainkart.com/media/extra3/QhHbwbf.jpg = p be the equation of the plane. We know that http://www.brainkart.com/media/extra3/idIqMXk.jpg is parallel to the given line and http://www.brainkart.com/media/extra3/QhHbwbf.jpg is normal to the given plane. If θ is the acute angle between the line and the plane, then the acute angle between http://www.brainkart.com/media/extra3/QhHbwbf.jpg and http://www.brainkart.com/media/extra3/idIqMXk.jpg is ((π/2)-θ).Therefore,

http://www.brainkart.com/media/extra3/ELVO9kG.jpg

So, the acute angle between the line and the plane is given by θ = http://www.brainkart.com/media/extra3/AK6Qfic.jpg          ….(1)

In Cartesian form if http://www.brainkart.com/media/extra3/thwtWX6.jpg and ax + by + cz = p are the equations of the line and the plane, then http://www.brainkart.com/media/extra3/idIqMXk.jpg = a1iˆ + b1 ˆj + c1kˆ and  http://www.brainkart.com/media/extra3/QhHbwbf.jpg = i + j + k . Therefore, using (1), the acute angle θ between the line and plane is given by

http://www.brainkart.com/media/extra3/wqTHwjy.jpg

1.     Find the angle between the straight line http://www.brainkart.com/media/extra3/N41G6fN.jpg = (2ˆi + 3ˆj + ˆk )+ t (ˆi - ˆj + ˆk ) and the plane 2x - y + z = 5 .

Solution

The angle between a line http://www.brainkart.com/media/extra3/N41G6fN.jpg = http://www.brainkart.com/media/extra3/sdKAwVV.jpg + thttp://www.brainkart.com/media/extra3/idIqMXk.jpg  and a plane http://www.brainkart.com/media/extra3/N41G6fN.jpg http://www.brainkart.com/media/extra3/QhHbwbf.jpg = p with normal http://www.brainkart.com/media/extra3/QhHbwbf.jpg is θ 

http://www.brainkart.com/media/extra3/YLkUOuh.jpg

Distance Of A Point From A Plane



(a) Vector form of equation

1.  The perpendicular distance from a point with position vector http://www.brainkart.com/media/extra3/ZQDIYLl.jpg to the plane http://www.brainkart.com/media/extra3/N41G6fN.jpg ⋅ http://www.brainkart.com/media/extra3/QhHbwbf.jpg is given by

http://www.brainkart.com/media/extra3/hWPNEX2.jpg

Proof

Let be the point whose position vector is http://www.brainkart.com/media/extra3/ZQDIYLl.jpg.

Let be the foot of the perpendicular from the point to the plane  http://www.brainkart.com/media/extra3/N41G6fN.jpghttp://www.brainkart.com/media/extra3/QhHbwbf.jpg . The line joining and is parallel to the normal vector http://www.brainkart.com/media/extra3/QhHbwbf.jpg and hence its equation is http://www.brainkart.com/media/extra3/N41G6fN.jpg http://www.brainkart.com/media/extra3/ZQDIYLl.jpg thttp://www.brainkart.com/media/extra3/QhHbwbf.jpg .

But F is the point of intersection of the line http://www.brainkart.com/media/extra3/N41G6fN.jpg = http://www.brainkart.com/media/extra3/ZQDIYLl.jpg + thttp://www.brainkart.com/media/extra3/QhHbwbf.jpg and the given plane http://www.brainkart.com/media/extra3/N41G6fN.jpg ⋅ http://www.brainkart.com/media/extra3/QhHbwbf.jpg p . If http://www.brainkart.com/media/extra3/N41G6fN.jpg1 is the position vector of F, then http://www.brainkart.com/media/extra3/bnI7gQa.jpg for some t1 ∈ R, and  http://www.brainkart.com/media/extra3/N41G6fN.jpg ⋅ http://www.brainkart.com/media/extra3/QhHbwbf.jpg p  Eliminating http://www.brainkart.com/media/extra3/N41G6fN.jpg1 we get

http://www.brainkart.com/media/extra3/EbXQkBO.jpg

Therefore, the length of the perpendicular from the point A to the given plane is

http://www.brainkart.com/media/extra3/Vmjac8U.jpg

The position vector of the foot F of the perpendicular AF is given by

http://www.brainkart.com/media/extra3/PVrmTzf.jpg

 

(b) Cartesian form of equation

In Caretesian form if Ax1 , y1 , z1 ) is the given point with position vector http://www.brainkart.com/media/extra3/ZQDIYLl.jpg and ax by cz is the Cartesian equation of the given plane, then  http://www.brainkart.com/media/extra3/ZQDIYLl.jpg x1ˆi  y1ˆ z1ˆand  aˆi  bˆj cˆk.  Therefore, using these vectors in http://www.brainkart.com/media/extra3/UeYBA5b.jpg we get the perpendicular distance from a point to the plane in Cartesian form as

http://www.brainkart.com/media/extra3/2Yqa1EW.jpg



2.     Find the distance of a point (2, 5, −3) from the plane http://www.brainkart.com/media/extra3/N41G6fN.jpg ⋅ (6ˆ− 3ˆ+ 2ˆ) = 5 .

Solution

Comparing the given equation of the plane with http://www.brainkart.com/media/extra3/N41G6fN.jpghttp://www.brainkart.com/media/extra3/QhHbwbf.jpgp we have http://www.brainkart.com/media/extra3/QhHbwbf.jpg = − 3ˆ+ 2ˆ

We know that the perpendicular distance from the given point with position vector http://www.brainkart.com/media/extra3/ZQDIYLl.jpg to the planer http://www.brainkart.com/media/extra3/N41G6fN.jpghttp://www.brainkart.com/media/extra3/QhHbwbf.jpgp is given by http://www.brainkart.com/media/extra3/Pr0wjcG.jpg.Therefore, substituting http://www.brainkart.com/media/extra3/LNqNPQb.jpg in the formula, we get

http://www.brainkart.com/media/extra3/nkGqA2p.jpg

 

Distance between two parallel planes

1.     The distance between two parallel planes ax by cz d1 = 0 and ax by cz d2 = 0 is given by 

http://www.brainkart.com/media/extra3/flNm6ZK.jpg

Proof

Let Ax1 , y1 , z1 ) be any point on the plane ax by cz d2 = 0 , then we have

ax1 + by1 + cz1 + d2 = 0  ax1 + by1 + cz1 = −d2

The distance of the plane ax by cz d1 = 0 from the point Ax1 , y1 , z1 ) is given by

http://www.brainkart.com/media/extra3/HHTOKeT.jpg

Hence, the distance between two parallel planes ax + by + cz + d1 = 0 and ax + by + cz + d2 = 0 given by δ http://www.brainkart.com/media/extra3/gjb7HpL.jpg.

 

2.     Find the distance between the parallel planes + 2 − 2+1 = 0 and 2+ 4 − 4+ 5 = 0

Solution

We know that the formula for the distance between two parallel planes ax by cz d1 = 0 and ax by cz d2 = 0 is http://www.brainkart.com/media/extra3/E3AD7tZ.jpg Rewrite the second equation as x + 2y – 2z + 5/2 = 0. Comparing the given equations with the general equations, we get = 1, = 2, = −2, d1=1, d2 = 5/2.

Substituting these values in the formula, we get the distance

http://www.brainkart.com/media/extra3/JBgzDKC.jpg

3.     Find the distance between the planes 

http://www.brainkart.com/media/extra3/0yFpMAe.jpg

Solution

Let http://www.brainkart.com/media/extra3/ZQDIYLl.jpg be the position vector of an arbitrary point on the plane http://www.brainkart.com/media/extra3/N41G6fN.jpg(2 ˆi − ˆ− 2 ˆ) = 6 . Then, we have

http://www.brainkart.com/media/extra3/ZQDIYLl.jpg(2 ˆi − ˆ− 2 ˆ) = 6                           .................(1)

If δ is the distance between the given planes, then δ is the perpendicular distance from http://www.brainkart.com/media/extra3/ZQDIYLl.jpg to the plane

http://www.brainkart.com/media/extra3/4d09F4K.jpg

 

Equation Of Line Of Intersection Of Two Planes :

Let http://www.brainkart.com/media/extra3/N41G6fN.jpg http://www.brainkart.com/media/extra3/QhHbwbf.jpg and http://www.brainkart.com/media/extra3/N41G6fN.jpg http://www.brainkart.com/media/extra3/XWGAToB.jpg q  be two non-parallel planes. We know that http://www.brainkart.com/media/extra3/QhHbwbf.jpg and http://www.brainkart.com/media/extra3/XWGAToB.jpg are perpendicular to the given planes respectively.

So, the line of  intersection of these planes is perpendicular to both http://www.brainkart.com/media/extra3/QhHbwbf.jpg × http://www.brainkart.com/media/extra3/XWGAToB.jpghttp://www.brainkart.com/media/extra3/QhHbwbf.jpg and http://www.brainkart.com/media/extra3/XWGAToB.jpg . Therefore, it is parallel to the vector http://www.brainkart.com/media/extra3/QhHbwbf.jpg × http://www.brainkart.com/media/extra3/XWGAToB.jpg. Let

http://www.brainkart.com/media/extra3/kBmF43T.jpg

http://www.brainkart.com/media/extra3/b3LJoyE.jpg

Consider the equations of two planes a1b1c1p and a2b2c2. The line of intersection of the two given planes intersects atleast one of the coordinate planes. For simplicity, we assume that the line meets the coordinate plane = 0 . Substitute z=0 and obtain the two equations  a1x b1− = 0 and a2 b2− = 0 .Then by solving these equations, we get the values of and as x1  and y1  respectively.

So,  ( x1 , y1 , 0) is a point on the required line, which is parallel to  l1iˆ + l2 ˆl3kˆ . So, the equation of the line is

http://www.brainkart.com/media/extra3/skieKPq.jpg

Meeting Point Of A Line And A Plane

1.     The position vector of the point of intersection of the straight line http://www.brainkart.com/media/extra3/2YhTypU.jpg and the plane

http://www.brainkart.com/media/extra3/tmis50I.jpg

Proof

Let http://www.brainkart.com/media/extra3/2YhTypU.jpg be the equation of the given line which is not parallel to the given plane whose equation is 

http://www.brainkart.com/media/extra3/RayQjgw.jpg

Let http://www.brainkart.com/media/extra3/ZQDIYLl.jpg be the position vector of the meeting point of the line with the plane. Then http://www.brainkart.com/media/extra3/ZQDIYLl.jpg satisfies both http://www.brainkart.com/media/extra3/2YhTypU.jpg and http://www.brainkart.com/media/extra3/N41G6fN.jpg http://www.brainkart.com/media/extra3/QhHbwbf.jpg for some value of , say t1. So, We get

http://www.brainkart.com/media/extra3/9lOFEcW.jpg

2.      

Find the coordinates of the point where the straight line http://www.brainkart.com/media/extra3/mEVsmMu.jpg intersects the plane − − 5 = 0 .

Solution

http://www.brainkart.com/media/extra3/6OjTOKC.jpg

The vector form of the given plane is http://www.brainkart.com/media/extra3/PrYPwk3.jpg

We know that the position vector of the point of intersection of the line http://www.brainkart.com/media/extra3/2YhTypU.jpg and the plane

http://www.brainkart.com/media/extra3/uvXHKuk.jpg

Therefore,the position vector of the point of intersection of the given line and the given plane is

http://www.brainkart.com/media/extra3/wc4oLVt.jpg

That is, the given straight line intersects the plane at the point (2, −1, 2 ).