Algebra

 Introduction:

          The word algebra comes from the title of the Arabic book Ilm al-jabrwa’l-mukabala by the Persian mathematician and astronomer al-Khwarizmi. Algebra is the study of mathematical symbols and rules for calculating these symbols. In arithmetic, only numbers and their arithmetical operations (such as +,-, ×, ÷) occur. In algebra, numbers are often represented by symbols called variables.

 

Polynomial:

     A special kind of algebraic expression is a polynomial. In a polynomial all variables are raised to only whole number powers.

       Example:

                             x+y+z, 4x2+3x+7, mn etc.

 

Monomial:

     An expression which contains only one term is called a monomial.

       Example:

                            4x, 3x2y, -2y2

Binomial:

     An expression which contains only two terms is called a binomial.

       Example:

                            2x+3, 5y2+9y, a2 b2+2b

 

Trinomial:

    An expression which contains only three terms is called a trinomial.

       Example:

                            2a2b-8ab+b2,   m2-n2+3

 

Polynomial:

    An expression which contains more than three terms is called a polynomial.

       Example:

                             x2 + (a+b) x+ab+5,   a3+b3+c3+abc

 

a16

 

Difference between an Algebraic Expression and a Polynomial:

       Algebraic Expression may contain whole numbers, fractions, and negative powers on their variables.

       Example:

                            4x3/2-3x+9,  2y2+ (5/y)-3,  3x2-4x+1

 

       Polynomial contains only whole numbers as the power of their variables.

       Example:

                            4x2-3x+9,  2y6+5y3-3

 

Multiplication of Algebraic Expressions:

²  Multiply the signs of the terms. That is, the product of two like signs are positive and the product of two unlike signs are negative.

pic

 

²  Multiply the corresponding co-efficient of the terms.

²  Multiply the variable factors by using laws of exponents.

If 'x' is a variable and m, n are positive integers then,

xm × xn = xm+n

       Example:

                                                 x3 × x4 = x3+4= x7

 

a17

 

NOTE:

     Product of two terms is represented by the symbols ( ), dot (.) or ×

 

Example 3.1:

     If the side of a square carpet is 3x2 metre, then find its area.

Solution:

            The area of the square carpet, A        = (side x side) sq. units.

                                                   = 3x2 × 3x2

                                                                          = 3 × 3 × x2 × x2

                                                         A        = 9x4  sq.m

 

Example 3.2:

       If the length and breadth of a rectangular painting are 4xy3 and 3x2y. Find its area.

Solution:

                Area of the rectangular painting, A = (l x b) sq. units

= (4xy3) (3x2y)

= (4 × 3) (x × x2) (y3 × y)

 A = 12x3y4

 

Example 3.3:

              Find the product of 3x2and (-4x)

Solution:

                     (3x2) × (-4x)                = (+) (-) (3 × 4) (x2 × x)

                                                               =-12x3

 

Example 3.4:

       Find the product of 2x2y2, 3y2z and -z2x3

Solution:

                     (2x2y2) × (3y2z) × (-z2x3)     = (+) × (+) × (-) × (2×3×1) (x2 × x3) (y2× y2) (z× z2)

                                                                            = -6x5y4z3

 

Multiplication of a Polynomial by a Monomial:

Distributive law:

       If a is a constant, x and y are variables then a(x + y) = ax+ay

a18

 

Example 3.5:

       Multiply (3xy+7) by (-4y)

Solution:

                            -4y (3xy+7)    = -4y (3xy) + (-4y) (7)

                                                       = (-4 × 3) x × y × y + (-4 × 7) y

                                                       = -12xy2-28y

 

Example 3.6:

       Multiply 3x2y and (2x3y3 -5x2y+9xy)

Solution:

                            3x2y (2x3y3 -5x2y+9xy)        = 3x2y (2x3y3)-3x2y (5x2y) +3x2y (9xy)

       Multiplying each term of the polynomial by the monomial

                                                                                    = (3×2) (x2 × x3) (y × y3)-(3 × 5) (x2 × x2) (y × y) + (3× 9) (x2 × x) (y×y)

                                                                                    = 6x5y4-15x4y2+27x3y2

 

Example 3.7:

       If Guru wants to multiply the expressions (2x + 3y + 50) and 3xy, what is the resultant expression?

Solution:

                            The resultant expression     = 3xy × (2x + 3y + 50)

                                                                                 =3xy (2x) + 3xy (3y) +3xy (50)

                                                                                =6x2y+9xy2+150xy

 

Example 3.8:

Ram deposited 'x' number of Rs.2000 notes, 'y' number of Rs.500 notes, 'z' number of Rs. 100 notes in a bank and Velan deposited '3xy' times of amount of what Ram had deposited. How much amount did Velan deposit in the bank?

Solution:

                     Amount deposited by Ram            = (x × 2000+ y × 500 + z × 100)

                                                                                    = Rs. (2000x+500y+100z)

                     Amount deposited by Velan = 3xy times x Amount deposited by Ram

                                                                                    = 3xy x (2000x + 500y+ 100z)

                                                                                    = (3×2000) (x×x×y) + (3×500) (x×y×y) + (3×100) (x×y×z)

                                                                                    = Rs. (6000x2y+1500xy2+300xyz)

 

Multiplication of Two Binomials:

a19

 

Example 3.9:

       Multiply (2x+5y) and (3x-4y)

Solution:

                     (2x+5y) × (3x-4y)        = 2x (3x-4y) + 5y (3x-4y)

                                                               = 6x2-8xy+15xy-20y2

                                                               = 6x2+7xy-20y2 (simplify the like terms)

a1

 

Division of Algebraic Expressions:

       Division is the reverse operation of multiplication.

       There are four ways of division on algebraic expressions.

 

They are division of

• Monomial by a Monomial

• Polynomial by a Monomial

• Polynomial by a Binomial

• Polynomial by a Polynomial

 

Division of a Monomial by another Monomial:

Example 3.10:

       Velu pastes ' 4xy' pictures in one page of his scrap book. How many pages will he need to paste 100x2y3 pictures? (x, y are positive integers)

Solution:

              Total number of pictures     = 100x2y3

              Each page contains                 = 4xy pictures

                                                                      = 100x2y3 /4xy

                                                                      = 25x2-1y3-1

                                                                      = 25xy2 pages

 

Division of an Algebraic Expression (Polynomial) By a Monomial:

       To divide a polynomial by a monomial, divide each term of the polynomial by the monomial.

a20

 

Example 3.11:

       Divide (5y3-25y2+8y) by 5y

Solution:

                           (5y3-25y2+8y) ÷ 5y            = (5y3-25y2+8y) / 5y

                                                                             = (5y3/5y) - (25y2/5y) + (8y/5y)

                                                                             = y3-1 - 5y2-1+ (8/5)

                                                                             = y2-5y + (8/5)

 

Example 3.12:

       Sethu travelled (4x2 +3xy2 + 5x) km in '2x' hrs. Find his speed of travel.

Solution:

                     Speed         = distance travelled / time taken

                                          = (4x2 +3xy2 + 5x) / 2x

                                          = (4x2/2x) + (3xy2/2x) + (5x/2x)

                                          = 2x2-1+ (3/2 y2) + (5/2)

                     Speed         = (2x + (3/2 y2) + (5/2) km/ hr.

 

Example 3.13:

       Divide (10m2-5m) by (2m-1)

Solution:

                     (10m2-5m) / (2m-1)      = [5m (2m-1)] / (2m-1)

               (Taking common factor from the numerator)

                                                                      = 5m

 

a2

a3

 

 

Identities:

       An identity is an equation satisfied by any value that replaces its variable(s). Some of the basic identities are the following:

              (a+b)2        = a2+b2+2ab,

              (a-b)2         = a2+b2-2ab,

              (a2 - b2)     = (a+b) (a-b),

       (x+a)(x+b)       = x2+ (a+b)x+ab

 

a13 a14

 

Applications of Identities:

Example 3.14:

       Find the value of (3a+4c)2 by using (a+b)2

Solution:

                     Here  a = 3a  and  b = 4c

                            (a+b)2       = a2+b2+2ab

                            (3a+4c)2   = (3a)2 + 2(3a) (4c) + (4c)2

                                                 = 32a2 + (2×3×4) (a×c) + 42c2

                            (3a+4c)2    = 9a2+24ac+16c2

 

Example 3.15:

       Find the value of 9982 using (a-b)2 identity.

Solution:

                            998                    = 1000-2

                            (998)2              = (1000-2)2

                   

(a-b)2                 = a2+b2-2ab

                            (1000-2)2       = (1000)2 -2(1000) (2) +22

                                                       = 1000000-4000+4

                                                        =996004

 

Example 3.16:

       Simplify (3x+5y) (3x-5y) by using (a+b) (a-b) identity.

Solution:

                           

             Here a= 3x, b= 5y

                            (3x+5y) (3x-5y)           = (3x)2 - (5y)2

                                                                      = 32x2-52y2

                                                                      = 9x2-25y2

 

Example 3.18:

       Simplify (5x+3) (5x+4) by using (x+a) (x+b) identity.

Solution:

              (x+a) (x+b) = x2 + (a+b) x+ab

              Here x= 5x and a=3, b=4

                     (5x+3)(5x+4)         = (5x)2 + (3+4) (5x)+(3) (4)

                                                        = 52x2 + (7) (5x) + 12

                                                        =25x2+35x+12

 

Cubic Identities:

a4

 

Geometrical Interpretation:

Here In the left hand side, there is a cube whose Side is (a + b) then its volume is equal to, sum of a cube whose side is 'a' units, 3 cuboids whose sides are (a, a and b) units, 3 more cuboids whose sides are (a, b, b) units and a cube whose is 'b' units.

a5

a6

 

Geometrical interpretation:

       Let us take a cube whose side is 'a' units, make one more cube whose side is 'b' units (b < a) at one of its corners. Complete the diagram with respect to sides to get cubes and cuboids in it.

       Hence the volume of the cube of side (a - b) is obtained by removing 4 elements namely 3 cuboids whose sides are (a, a and b) units and cube of side 'b' units from the cube whose side is 'a' units and finally 3 cuboids of sides (a, b and b) units are added to get the cube whose side is (a - b)

 

a8

Geometrical interpretation:

The geometrical illustration of the above identity is the cuboid whose

Length, breadth, and height are (x+a), (x+b), (x+c) and whose volume is (I x b x h) that is v=(x+a) (x+b) (x+c). This cuboid contains a cube of side 'x' units , 3 cuboids of sides (a,b,x),(b,c,x) and (c,a,x)and and one cuboid of side (a,b,c)

 

a15

 

Easier ways of deducting the above cubic identities:

a9

Applications of Cubic Identities:

Example 3.19:

       Expand (x+4)3

Solution:

                     Here a=x, b=4

                     (a+b)3        = a3+3a2b+3ab2+b3

                     (x+4)3        = (x)3+3(x)2(4) + 3(x) (4)2+(4)3

                                          = x3+3x2(4) +3(x) (16) + 64

                                          = x3+12x2+48x+64

 

Example 3.20:

       Find the value of (103)3

Solution:

                     (103)3          = (100+3)3

              Here a=100 , b=3

                     (a+b)3        = a3+3a2b+3ab2+b3

                     (100+3)3   = (100)3+3(100)2(3) + 3(100) (3)2+ (3)3

                                          = 1000000+3(10000) (3) + 3(100) (9) + 27

                                          = 1092727

 

Example 3.21:

       Expand (y-5)3

Solution:

       Here a=y, b=5

                     (a-b)3          = a3-3a2b+3ab2-b3

                     (y-5)3         = (y)3-3(y)2(5) +3(y) (5)2-(5)3

                                          = y3+3y2(5)+3y(25)-125

                                          = y3+15y2+75y-125

 

Example 3.22:

       Find the value of (98)3

Solution:

                     (98)3              = (100-2)3

                     Here a=100, b=2

              (a-b)3=a3-3a2b+3ab2-b3

                     (100-2)3    = (100)3-3(100)2(2) + 3(100) (2)2-(2)3

                                          =1000000-3(10000) (2) + 3(100) (4)-8

                                          = 1000000-60000+1200-8

                                          = 941192

 

Example 3.23:

       Expand (x+3) (x+5) (x+2)

Solution:

              Here a=3, b=5, c=2

              (x+a)(x+b)(x+c)          = x3 + c(a+b+c) x + (ab+bc+ca)

              (x+3)(x+5)(x+2)          = (x)3 + (3+5+2)x+((3)(5)+(5)(2)+(2)(3))

                                                        = x3+10x2+(15+10+6)x+30

                                                        = x3+10x2+31x+30

 

Factorisation:

       Expressing an algebraic expression as a product of two or more expressions is called the factorisation.

       Note that ‘1’ is a factor for all numbers and expressions.

       So, when we factorise the expressions, follow the suitable type of factorisation given below to get two or more factors other than 1. Stop doing the factorisation process once you have taken out all the common factors from the expression and then list out the factors.

 

a10

 

Type: 1 Factorisation by taking out the common factor from each term.

a21

Example 3.24:

       Factorise: 2m3 —5m2 + 9m

Solution:

       Taking out the common factor ‘m’ from each term, we get

                     2m3 —5m2 + 9m = m (2m2 —5m + 9)

 

Example 3.25:

       Factorise 4x2y+8xy

Solution:

                            4x2y+8xy         = (2×2×x×x×y) + (2×2×2×x×y)

              Taking out the common factor 2, 2, x. y, we get

                            4x2y+8xy         = 2×2×x×y(x+2)

                                                        = 4xy(x+2)

 

Type: 2 Factorisation by taking out the common binomial factor from each term

Example 3.26:

       Factorise: (2x+5) (x-y) + (4y) (x-y)

Solution:

              Taking out the common binomial factor (x-y), we get,

                                   (2x+5)(x-y) + (4y)(x-y)  = (x-y)(2x+5+4y)

 

Type: 3 Factorisation by grouping

       Sometimes, the terms of a given expression are grouped suitably in such a way that they have a common factor so that the factorisation is easy to take out common factor from those terms.

 

Example 3.27:

       Factorise: x2+yz+xy+xz

Solution:

                     x2+yz+xy+xz         = (x2+xy) + (yz+xz)

                                                        = x(x+y) + z(y+x)

                                                        = x(x+y) + z(x+y) (since addition is commutative)

              Taking out the common factor (x+y), we get

                     x2+yz+xy+xz         = (x+y) [x+z]

 

a22

 

 

Type: 4 Factorisation using identities

Example 3.28:

       Factorise x2+8x+16

Solution:

                            x2+8x+16        = x2+8x+42

                     (x2)+2(x) (4) + (4)2    = (x+4)2

                     x2+8x+16                      = (x+4)2

 

Example 3.29:

       Factorise 49x2-84xy+36y2

Solution:

                     49x2-84xy+36y2         = 72x2-2(7x) (6y) + 62y2

                                                               = (7x)2-2(7x) (6y)+(6y)2

(a-b)2 = a2+b2-2ab

Here a=7x, b=6y

                            (7x)2-2(7x) (6y)+(6y)2    = (7x-6y)2

                            49x2-84xy+36y2                    = (7x-6y)2

 

Example 3.30:

       Factorise 49x2-64y2

Solution:

                     49x2-64y2          = (7x)2-(8y)2

       a2-b2 = (a+b) (a-b)

       Here a=7x, b=8y

              (7x)2-(8y)2                 = (7x+8y) (7x-8y)

              49x2-64y2                   = (7x+8y) (7x-8y)

 

Type: 5 Factorisation of the expression (ax2+bx+c)

 

Example 3.31:

       Factorise x2+8x+15

Solution:

       Here a=1, b=8, c=15

       The product =a×c=1×15=15

       The sum =b =8

a11

 

      x2+8x+15 = (x2+3x) + (5x+15) (since the middle term 8x can be written as 3x+5x)

                            = x(x+3) + 5(x+3) (taking out the common factor x+3)

                            = (x+3) (x+5)

 

Factorisation Of Cubic Identities:

The factorisable forms of the cubic identities are

       a3+b3 = (a+b) (a2-ab+b2)

       a3-b3 = (a-b) (a2+ab+b2)

a12

 

 

Example 3.34:

       Factorise 8p3+q3

Solution:

       8p3+q3 = (2p)3+q3

       a3+b3   = (a+b) (a2-ab+b2)

Here a=2p, b=q

       (2p)3+q3      = (2p+q) ((2p)2-(2p) (q) + (q)2)

       8p3+q3         = (2p+q) (4p2-2pq+q2)

 

Example 3.35:

       Factorise 81x3-3y3

Solution:

              81x3-3y3   = 3(27x3-y3)

                                   = 3[(3x)3-y3]

       a3-b3 = (a-b) (a2+ab+b2)

Here a=3x, b=y

       3[(3x)3-y3]        = 3{(3x-y) [(3x)2 + (3x) (y)+y2]}

       81x3-3y3             = 3{(3x-y) [(3x)2 + (3x) (y)+y2]}